Tech/News Periodical

The Transactor ==

CK commodore Commadore Canada's \

OQur Last Issue! _

Well... this is it... the last issue of The Transactor. .
After <considering the alternatives, we've decided to
discontinue publication at Commodore Canada in favour of
Commodore, The Microcomputer Magazine, our U.S. counterpart.

After only a few issues, the U.S. have established a
circulation of over 10,000! With that much penetration, we
believe that a combination of U.S. and Canadian material will
not only reach more Commodore users, but make
The Microcomputer Magazine the best resource for PET/CBM and
VIC information!

I'd like to extend thanks to all contributing writers
for all three volumes., Particular . regards to Jim Law,
Dave Berezowski, Henry Troup, Ted Evers, Kevin Erler,
Charles HMcCarthy, Gord Campbell, and Sieg Deleu. Extra
special thanks go out to Don White, Dave Hook, and
Jim Butterfield; your exceptional brand of enthusiasm and
undying efforts are found all too seldom, but appreciated by
SO many.

The spirit of The Transactor will live on! Haterial
generated within Commodore Canada by Paul Higginbottom, Joe
Ferrari, Donna Green, Dave Berezowski, Peter Velocci, and
myself, will be sent stateside. Articles submitted from
outside will, as always, be gratefully accepted... so keep
'em coming! Your feedback together with our input will
produce a resonating -support interface, amplified by
Comnmodore, The Microcomputer Magazine!

Sincerely Yours,
Karl J. Hildon
Editor, The Transactor

6 issue subscription in : U.S.A. $10.00
(published bi-monthly) - Canada & Mexico $25.00 US Dlrs
Outside N. America $25.00 US Dlrs
Or see your local Commodore dealer for a newstand copy!

Send name and return address with cheque or m/o payable to :

Commodore Business Machines, Inc.
681 Moore PRoad,

King of Prussia, PA, 19406

Attn: Editor, Commodore Magazine

The Transactor has been produced on the CBM 8032 with
WoréPro 4+ and the NEC Spinwriter. \



Index Transactor #6

Bits & Pi€CES ceeveccscsssccscssccscos
Faster Than A Speeding Cathode Ray.
More One-Liners .cccececescscesccesns
Deriving Mathematical Functions ...
Graphics Tablet .ececvecceccccccccee
CB2 Amplifier ..ceececceccoscccccccs
SUpPerPET RS232 .tcececcevoscccscccne
Some VIC NOLEeS seceececcccsscccsnsce
Attention COMAL-80 Users! .ccececacss

Pretty Printing .seeeecececeesccecccccoce

Compiler CommentsS cecececscescscccsacas

BASIC Labels Re-Revisited .cecececcccee

4022 Printer NOLES .csecesesescocccsscs

Turning The Switch?.. Allow Your PET!.

Machine Language Auto-Location .......

1981 PET Bibliography ecceececccccccccss

Two Terminal Programs: IEEE & RS232 ..

BASIC-AID, A Super Editor For The PET.

OO U b WWW



Bits & Pieces
Faster Than A eedin thode Rayl

These next one-liners come from Richard Griffith of
Thunder Bay, Ontario.

10 PRINT"[CLR DN DN]IS NOT YOUR NAME ABE LINCOLN?":GOTOlO0

The string in the above statement prints and clears so fast
that the screen can't keep up! You might expect the text to
'*flash' on and off. But, as the trace is scanning the
screen, the text actually prints, clears, and prints again
before the trace gets a chance to erase. 1It's hard to say
how many, but BASIC prints and clears several times during a
single screen scan. Therefore, the text appears to be
stationary, as if the Clear Screen character was not -even
there!

Then, they become 'un-syncronized'. At this point, the
text appears to be drawn slowly across the line. The trace
draws part of the text and then it's turned off again by the
Clear Screen., The same thing happens next time around only a
little farther to the left or right. 1It's rather hard to
explain but not hard to imagine when you're looking at it.

Try different combinations by adding or removing CLRs,
DNs, characters, commas and semicolons. For an interesting
effect, add line 20 by simply duplicating line 10 (remove the
GOTO 10 and add it at the end of line 20). Try this one too:

10 PRINT"[CLR 6DN]IS YOUR NAME ABE LINCOLN?";:GOTO1l0

6DN = 6 cursor downs. Different machines produce different
results. These were done on forty column PETs. 80 column
users will have to modify the statements slightly to get the
right effect since the scan speed is somewhat different.

Richard also has a one-line game which surely could be
expanded! It uses the SHIFT key as a control. The first
line does all the work, the second merely gets it going.

1 POKE A+T, 81:PRINT SPC(RND(TI)*36)"###":T=T+PEEK(152)*2-1:
IF PEEK(A+T)=32 THEN 1
2 PRINT "[CLR 24DN" : T=0 : A=32768

More One-Liners
These ones from Dave Berezowski of Thunder Bay.

1 FOR X=0 TO 999 : POKE 32768+X,
(PEEK(32768+X)+128) AND255 : NEXT

1 a=32768:i=0:j=38
2 S=SGN(J-I) : FOR X=I TO J STEP S

POKE A+X+S, 87 : NEXTX : I=39-1I : J=39

K
-J : GOTO 2



Deriving Mathematical Functions

BASIC has some trignometric functions implemented but
not all that may at some time be required. Here is a handy
list:

Secant SEC(X) = 1/CO0S(X)
Cosecant CSC{X) = 1/8IN{(X)
Cotangent COT(X) = 1/TAN(X)
Inverse Sine ARCSIN{(X) = ATN(X/SOR(-X*X+1))
Inverse Cosine ARCCOS(X) =-ATN(X/SQOR(-X*X+1))
+7/2
Inverse Secant ARCSEC(X) = ATN(X/SQR(X*X-1))
Inverse Cosecant ARCCSC(X) = ATN(X/SQR(X*X-1))
+(SGN(X)=-1*7/2
Inverse Cotangent ARCCOT(X) = ATN(X)+%/2
Hyperbolic Sine SINH(X) = (EXP(X)~-EXP(-X))/2
Hyperbolic Cosine COSH(X) = (EXP(X)+EXP(-X))/2
Hyperbolic Tangent TANH(X) = EXP(-X)/(EXP(X)
+EXP(~X)) *2+1
Hyperbolic Secant SECH(X) = 2/(EXP(X)+EXP(-X)
Hyperbolic Cosecant CSCH(X) = 2/(EXP(X)-EXP(-X)
Hyperbolic Cotangent COTH(X) = EXP(-X)/(EXP(X)
-EXP(-X)) *2+1
Inverse Hyperbolic Sine ARCSINH(X) LOG(X+SQR(X*X+1))

Inverse Hyperbolic Cosine ARCCOSH (X)
Inverse Hyperbolic Tangent ARCTANH(X)
Inverse Hyperbolic Secant ARCSECH (X)

LOG (X+SQOR(X*X-1))
LOG((1+X)/(1-X))/2
LOG((SQOR(=-X*X+1)
+1/X))

LOG ( (SGN(X)
*SOR(X*X+1/X))
Inv. Hyperbolic Cotangent  ARCCOTH(X) = LOG((X+1l)/(X-1))/2

nu

Inverse Hyperbolic Cosecant ARCCSCH(X)

Graphics Tablet

Looking for a graphics tablet? KURTA seems to have the
answer, It has an 8 1/2" x 11" surface with low radiation
for diskette protection. Pen operated with 100 to 200 points
per square inch., KURTA supplies all the software and
interfaces making it completely compatible with PET/CBMs,
For more information, contact:

In the U.S. In Canada:

KURTA Corp. TCS Communications
206 S. River Dr. 1158 Victoria St. N.
Tempe, Arizona Kitchener, Ontario
85281 N2B 3C9

602 968 8709 519 744 5071



CB2 Amplifier

This tidy little circuit cam from Ted Evers of Toronto.
Connect it to the User Port CB2 line, ground, and one of the
12 volt pins inside the machine, and you've got CB2 sound
(with optional headphones jack to prevent raging parents,
teachers and wives). ,

GNDe

A2 X o




Attention SuperPET RS232 Interfacerst!

Here are the pin connections for the RS232 Port of the
SuperPET:

13 1
Q{»O 0 00O0OO0OO0OOOO OO OO
O 0O 00O0O00O0O0O0O0O0
25 14
Pin Description Mnemonic Comments
1 Protective Ground
2 Transmitted Data TXD Output
3 Received Data RXD Input
4 Request To Send RTS Output
5 Clear To Send CTS Input
6 Data Set Ready DSR Input
7 Signal Ground
8 Data Carrier Detect DCD Input
20 Data Terminal Ready DTR Output

The Data Set {(Modem) contrcls inputs, CTS, DSR, and DCD are
expected to operate in the normal way. If the device you
connect to the SuperPET serial port does not control these
pins, you should connect pins 6 and 8 to pin 20, and pin 5 to
pin 4 within the connector attached to the SuperPET board.
With these connections some devices may then be operated with
a 4-wire cable using only TXD, RXD and the 2 grounds.

Another note to SuperPET users, COBOL should be
available around the end of July '82. It will be made
availble FREE to all existing SuperPET owners and included
with any new SuperPET deliveries. For more details, contact
your local dealer sometime in July.

Some VIC Notes

Vic-20 owners that wish to connect to colour monitors
will need some extra cables, You could wire them up
yourselves; for pin connections, see the VIC 20 Programmers
Reference Guide, pp.282. Remember, the connectors shown here
are as you look at them from the back of the VIC. The
corresponding pins on the jacks will be "mirror image"
looking into the jack.

You can buy the necessary cables at any Radio Shack.
First you'll need a "Y" Adapter (Part# 42-2394); a 5 pin
European plug to 4 phono jacks. This one goes on the
audio/video connector. It's not very 1long, so you'll also
need the 1.8m shielded stereo cable (42-2352). Most colour
monitors use a female BNC connector for video in. In this
case you'll need the ARCHER female RCA phono to male BNC
adapter (278-254).



"Y" Adapter Connections

Black -~ Video low

Grey = Audio

White Video High

Red +5V Requlated €10 mA. max.

The 1.8m extension has black and grey connectors at each end.
Use black for video and grey for audio.

Attention COMAL 80 Users!

We're collecting a list of bugs in COMAL-80., If you've
been using COMAL, you've probably found some. Two that crash
the machine are Division by Zero and Device Not Present. If
you have any more, please send them to us and we'll pass them
on. Hopefully version 00.12 will have them all corrected.
Send any comments to:

COMAL 80 Feedback

Commodore Business Machines
3370 Pharmacy Ave.
Agincourt, Ontario

M1wW 2K4

‘The Increase in Computer Crime Is Frightening.’



Pretty Printing Jim Rutterfield, Toronto

When you are producing output, it's good to make it neat.
The computer is there to help its human readers, and the more
you can do to improve the information, the better job you'll
be doing.

Printing in Columns

Beginners often arrange values in columns by using the screen
tabulation functions: putting a comma into the PRINT
statement, or using the TAB function. These methods work,
but they have a pitfall: they won't behave properly if the
output goes to other devices. The problem is that the
computer always knows exactly where the screen cursor is, but
it never knows on what column the external devices are
located. It doesn't even try to keep track; so a TAB or a
comma directed to the printer or other device won't behave
properly.

It's my feeling that almost everything that goes the screen
can be usefully directed to the printer, or written to a disk
file with a view to transferring to the printer later. Once
you have a report looking nice on the screen, you don't want
to have to reprogram to get it looking nice in print. So ...
stay away from TAB and commas - there's a better way.

Redirecting Output

While I'm on the subject of switching output from the screen
to the printer, I'd like to share a little coding trick with
you. Most programmers Kknow that you can direct output to a
printer by performing an OPEN to device number 4 (the
printer) and then using PRINT#... That's fine for a finished
program, but you can waste a lot of paper while you're
checking out a program if you do everything to the printer.

Here's the trick: We can OPEN to device number 3 (the
screen) and PRINT# to the screen, checking our program and
fixing it up. When it's ready to go, all we need to do is to
change the OPEN statement so that it names device number 4,
and output goes to the printer. We save time and paper.
Let's try it: we code:

100 OPEN 1,3

110 FOR J=1 TO 10
120 PRINT#1,J;SQR(J)
130 NEXT J

140 CLOSE 1

When we run this program, output is delivered to the screen.,
If everything looks good, we can now change line 100 to
OPEN 1,4 ... and output is redirected.

It's not really a trick; it's good coding. We could allow
the user to specify what output he wanted by coding something
like: 100 INPUT"DEVICE NUMBER";N :0PEN 1,N so that the user
could type in 3 or 4 to select the type of output he wants.



Neatness Counts

If I'm sternly discouraging TAB and the comma, how can you
arrange things in columns? A few simple answers, but first
some ground rules. The best way to arrange stuff in columns
is to make sure that each "field" is always the same length;
that way, each item will be printed neatly in the same place
across the page.

How can we rechop two numbers as different as 3 and -32768 so
that they occupy the same space? For that matter, how can we
take two names as different as BUTTERFIELD and NG and make
them the same length?

Let's take the names first. These "strings" could be neatly
chopped down to a fixed 1length by means of the LEFTS(
function ..., if they were long enough. For example, we could
slice out the first eight characters of string X$ with
LEFTS$(X$,8); but it won't work if X$ 1is less than eight
characters long in the first place. So - pay attention - we
must first pad out the name by adding spaces to the end.
Sticking extra characters onto the end of a string is called
"concatenation" - pronounced with emphasis on the cat - and
is done with a plus sign. If we had a short name like M and
wanted to tack eight spaces on the end, we'd do it by writing
M4 " which would <create a new string nine
characters long. A name like BUTTERFIELD treated the same
way would end up nineteen characters long, but this doesn't
matter: we're going to chop them both down to the same
length with LEFTS(.

Let's put it all together. 1If the name is held in variable
NS, we code PRINT LEFTS{(NS+" ",8); with a semicolon at
the end, First we concatenate, adding the spaces; then we
chop (or "truncate"), cutting to a fixed length; finally we
print. Both long and short names will be printed as exactly
eight characters; the next thing we print will be neatly
lined up behind it. We might want to make the field more
than eight characters 1long, since a splendid name 1like
BUTTERFIELD would end up chopped to BUTTERFI - if we do
increase the length we must remember to add more spaces, of
course.

The above procedure is called Left Justification, since the
strings are lined up ‘neatly on the left with spaces filling
out the right hand side. We can go the other way and produce
Right Justification with a small adjustment: try
PRINT RIGHTS(" "+N$,8); and you'll see how the 1left
side fills with spaces and names line up on the right. This
is the kind of alignment you will want with numbers; we'll
deal with that in a moment., Remember that if you don't allow
enough space you'll end up with chopped-off names 1like
TERFIELD, and there's no justification for that...

If the numbers you are using are integers, you'll usually
want to line them up with right justification. Once again,
this is easy to do once you know the function that changes



numbers to strings. If your value is held in variable X, we
can change it to a string with STR$(X); now we can do the
right Jjustification with PRINT RIGHTS(" "+STRS(X) ,6);
everything will work out neatly. Study this statement and
see how X builds up into a neatly justified string of length
six.

If your numbers contain fractional values, you may want to
try to 1line up the decimal points. That's much more
challenging. Perhaps you'd like to try your hand at it.
We'll tackle it here another time,

HIL

FOR THE PET/CBM

VIGIL is an exciting new intersactive lansuase for wour
PET/CBM wmicro. VIGIL = Video Interactive Gawe

Interrretive Languase - is an easw to learn srarhics and
same lansuase thal lets wou ouickly create interactive
arrlications.

% More than &0 rowerful commands rerait wou Lo essile
manirulate srarhics fisures on the screen

% Double density srashics sive wou 80 X 50 rlol rositions
on wour 40 columsn PET/CBM

& Larse number disrlaw carability, access Lo two event
Limers 2nd Lone seneration (if wou have ext. sreaker)

Load and save uour VIGIL rrosrams to cassette

”»

Nine interaclive srosrams demonsiraie the rower of
VIG - Breakouts SpaceWar: AntiAircrafts U.F.0.s
SraceBstiles Concentrations Mazes Kaleidoscore & Fortune

-

Comprehensive user’s manual with comrlete listinss of
enclosed rrograms

VIGIL comes on cassetter readw to run on ans 40 column
PET/CBM micro with at least BK of memoru. Srecify ROM-set
when ordering. 4502 listing of the VIGIL Interrreter
aveilable seraratelu. .

VIGIL. for PET/CBM on CASSETTE (w/nine srosramsl.c.ccesse $33
UIGIL User’s Nanusl (refundable with softwarel..
VIGIL Interrreter listing (4502 Asseably lansuase).
PET MACHINE LANGUAGE GUIDE

ABACUS SOFTWARE
il P. O. Box 7211

i 'H' Grand Rapids, Michigen 49610

Prices include rostase. Michisan residents include 4X sales tax.
Orders sust be rressid or via bankcsrd (Mastercards VISAs Eurocarde
Accesss etc.). Include cerd nusber and exsiratica date.

pose-4

(C) 1981 bv Row ¥ainwrisht




ompiler Com : Jim Butterfield, Toronto

I don't want to become involved in the Great Debate about
compilers. On the other hand, it's almost irresistable to
dive in and add a few footnotes. You'll find no product
reviews here. Just a little talk about what's involved.

For BASIC?

Some languages were designed for compilers. In fact, the
compiler was designed first, and whatever it turned out you
had to type in ended up as the language. FORTRAN started
more or less this way. To put compilers in perspective, we
have to do a little historical work.

Once, long ago, there were no interactive computers. You
punched up a deck of cards and if you were lucky an operator
would run them sometime that week. Most of the results came
back saying something 1like SYNTAX ERROR (does that sound
familiar?). There was no point in having an interpreter
language; you wouldn't be there to watch it happen. We had
FORTRAN and COBOL and others...

The first FORTRANs, for example, were tricky. If you used a
variable <called DIGIT, it would turn out to be a
floating-point number; on the other hand a variable called
NUMBER would be fixed-point. Heaven help you if you typed
TOTAL=TOTAL+l; you'd get a ?MIXED MODE error notice and have
to recode TOTAL=TOTAL+1.0 to fix it. To input or output you
needed to give more than the command: an extra line called
FORMAT was needed, written in advanced gibberish. Honest.

Many of these problems have been fixed up over the years -
you did know that there was more than one FORTRAN, didn't
you? - but the style remains. The programmers have to adapt
to the machine, and interactive is still an alien concept.

And Now, BASIC...

Along came BASIC. 1It's a loose language: you don't have to
dimension some arrays; strings wander all over; sometimes you
can have FOR and NEXT items that don't match (bad practice,
but it can be done) ... and interactive users love it.

What's the problem? Things that are not clearly defined by
BASIC. Let's look at a few of them.

Strings may be the worst thing that a compiler has to deal
with, BASIC doesn't tell the compiler how big any string is
likely to be - ever. INPUT X$ gives no hint as to the size
of string X$. The poor compiler has a grim choice: allow
maximum space for all strings and waste a lot of memory; or
bounce the strings around as they change. The first
alternative costs you program size; you write this 1little
program that says DIM AS$(1000) and the compiler immediatey
reports OUT OF MEMORY since it tries to allocate 255000 bytes
for the array. The second alternative costs you time; no
matter what you call it, some sort of garbage collection will
have to take place. And then people complain because they
expect compilers to produce fast fast code.

- 11 -



At first glance we think that the whole object of compiling
is to get speed. But we don't give the compiler enough
information to work up a really fast program., 1It's obvious
that FOR J=1 TO 10 can run faster if we ¢treat J as an
integer. Unfortunately, we're not allowed to code FOR J%...
so the compiler will have to fiqure it out for itself. And
what will it do with FOR J=A TO B? Until A is computed, we
cannot know if it's integer or not.

It's obvious to us. We wrote the program. But the dumb
compiler can't read our minds; and BASIC doesn't give enough
explicit information to do the job.

One last example. It's one of the annoying things about
BASIC that we sometimes have to «code things 1like
GET#1,X$ : IF X$="" THEN X$=CHRS(0) mostly to cover failings
in -BASIC itself. If I were hand-coding into machine
language, I <could replace the whole thing with one
instruction, because I know that Machine Language doesn't
have the "fault" that's in BASIC. But a poor compiler can't
know that. It sees the GET instruction and codes it... and
it must add to the coding to generate the BASIC “fault" if it
wants to be compatible. Then it must proceed to the IF
statement and work through the coding to fix that same fault.

The Choices.,

The compiler designer has a choice. He can code for 99%
compatibility, tracking everything that BASIC does quite
exactly (including the faults). In doing so, he'll create a
package in whioh almost anything will compile sucessfully.
But - the compiled machine language will be doing most of the
things that BASIC does, and won't be much faster than BASIC.

On the other hand, the designer can ask the user to make
changes to his program before compilation that will help the
process. He may also have things that compile from BASIC in
a non-standard manner. He may make arbitrary decisions on
BASIC structures - all FOR 1loop variables will  ©be
fixed-point, for example. And the compiler may guestion the
user during compilation: How large is string M$ likely to
be? Can J be fixed-point? The user has to work harder, but
the end product runs faster.

Either way, the compiled program is not likely to be smaller
in size than its BASIC source. It's difficult to code 100
IFJ>S5THENPRINT"J IS";J in less than the 19 bytes that BASIC
uses., And good compilers add extra arithmetic - fixed-point
addition, for example - that takes up overhead space.

Why Compile?

It's your choice. If you have a program that runs for five
hours, vyou will ©probably be delighted with a paltry
four-to-one compiler speedup. If you want protection against
listing, a compiler will do a good job of instant
obfuscation.

Don't lose perspective, A program that spends most of its
time waiting for an operator or for a printer won't speed up
much under compilation.

- 12 -



Machine Lanuage Programmers will be happy to know that they
are not yet obsolete., Compilers can do a useful job. But
until they get the brains equivalent to a human's judgment,
they won't replace hand coding.

- 13 =



BASIC Labels Re-Revisited Charles A. McCarthy
St. Paul, MM,

In Transactor Vol. 2, No. 12 (Best Of The Transactor
Vol. 2, pp.l72-177), J. Hoogstraat presented a program that
makes a major contribution to the development and maintenance
of PET BASIC programs: BASIC GOTO and GOSUB targets may be
meaningful words. (A version for BASIC 4.0 appears in
Transactor Vel. 3, No. 1).

For a number of reasons, I found it advisable to
slightly re-work his program., The principal differences and
the reasons for the changes are:

1. A bug involving stack handling has been corrected. 1In
the original version, an interrupt that occurs during
lines 1240-1270 (of the assembly listing in Vol. 2) will
remove a flag from the stack. The result is that a BASIC
GOSUB #Label command will be interpreted as a GOTO
#Label. This happens randomly, on the average about once
every one to two thousand times that a GOSUB #Label is
encountered,

2., The original program makes free use of the .X and .Y
registers, and in particular, destroys .Y each time the
CHRGET routine at $0070 is called., I am loathe to use
these registers until absolutely sure that it is safe to
do so. Thus the present version returns with .X and .Y
unchanged except in those cases that I am certain about.

3. I wanted to make this program available to our local PET
users group. The code should be relocatable, which is
easy: the only position dependent code in the original
version is the call to the subroutine CORRECT which tests
for a terminator to a #Label, and this can equally well
be done inline. More importantly, for those who do wish
to position this code in the second cassette buffer, the
locations #03E0-S03F9 should be 1left free for Toolkit.
Despite my best efforts at tightening up the code, the
only way I could make it fit in $033A-03DF was to abandon
the initialization routine HOOKUP. HOOKUP may either be
placed following the present version, in which case a
SYS 990 may be done before Toolkit is activated, or it
may be placed in your BASIC program hidden in a REM
statement (for details see F. VanDuinen, Transactor Vol.
2, No. 8 Program Plus in the section Within BASIC).

4., At the start of a target line (a BASIC line that begins
with #Label), a comma seems inapropriate as a terminator
because the call to SKPSTT will skip over the comma to
the following colon or end-of-line null byte. Thus the
present version does not test for a comma as a terminator
here.



The program looks at the return address on the stack to
decide what action it should take. These addresses are

$C83E
$C869
check
about
tests
space

(THEN) , $C7AC (GOTO), $C78F (GOSUB), and
(ON..). The original version, and this one also,
only the low byte of this address., I am uneasy
this, so the version that I now use for myself
the high byte also (it lives in high memory where
is not so improtant). I very much doubt that such

caution is needed, but I want even less to find out that

it is,.

The

following 1listing was made from working code,

printed out by Supermon (Thank you Jim!). I have added
labels and comments and have tried to follow Mr. Hoogstraats'
original.

Charles A. McCarthy

1359 w.

St.

Paul,

Idaho Av.

MN,

(612) 645 6867

('*-' BAS

o7

033A

LABELS

o7
o7
o
oy
o
o7
o7
o7
o7
o7
.r
o7
.
.7

033D
033F
0341
0343
0344
0345
0347
0349
034B
034D
034F
0351
0352
0353

55108

4.0 users take note!l)

IC

4C EB C7 JMP SC7EB sUNDEF'D STATEMENT ERROR
; (*- $B86E) Issued when a
;searched for #Label is not
:found. Placed here so an
sinadvertent SYS826 doesn't
;cause a crash

E6 77 INC $77 ;Perform TXPTR inc for

DO 02 BNE $0343 ; CHRGET

E6 78 INC $78

8A TXA ;Save .X on stack

48 PHA

A2 FF LDX #SFF :Test immediate mode

E4 37 CPX $37

FO 06 BEQ S$0351 :Go exit if so

Al 78 LDA (S78,X) ;Run mode: check for '#'

Cc9 23 CMP #523 :Note (78,FF)=(77,00)

FO 05 BEQ $0356 ;Go test if found

68 PLA ;else exit to CHRGOT after

AA TAX ;restoring .X

4C 76 00 JMP $0076

- 15 -



CHKLAB

., 0356 68 PLA srestore .X

.r 0357 AA TAX

., 0358 68 PLA ;Low byte of calling addr.

., 0359 C9 3E CMP #S3E ; (*= #SC1) -

.. 035B FO 1A BEQ $0377 ;do THEN (Carry set)

.» 035D C9 AC CMP #SAC ; (*= #S2F)

., O035F FO 16 BEQ $0377 ;do GOTO (Carry set)

.» 0361 C9 8F CMP #S8F s (*= #812)

., 0363 FO 11 BEQ $0376 ;do GOSUB

.» 0365 48 PHA :Low byte to stack in case

., 0366 C9 69 CMP #S$69 ;nothing to do... (*- #SEC)
.r 0368 DO 6E BNE $03D8 ;then go SKPSTT and exit

., 036A 68 PLA ;do ON,. Pull rtn addr off
., O036B 68 PLA ;stack

.» 036C 20 70 00 JSR $0070 ;advance TXTPTR to comma

.» 036F C9 2C CMP #$2C ;following #Label

., 0371 DO F9 BNE $036C

.r 0373 4C 5F C8 JMP SC85F ; (*~ SBBE2) exit to ON.RET

; THEN/GOTO vs. GOSUB information is saved in carry bit

.r 0376 18 CLC ;GOSUB entry
., 0377 68 PLA ;finish pulling rtn address
., 0378 08 PHP ;Save which (PLA doesn't

affect Carry)

;At this point, free use may be made of .X and .Y SETLAD
makes no use of .X and .Y, and SKPSTT needs neither on entry,
but uses both.

FLABEL

., 0379 A5 28 LDA $28 ;Init BASIC text ptr to

.» O037B A6 29 LDX $29 ;search for line starting
.y 037D A0 00 LDY #S00 ;with #Label. Hi byte in .X
.r O37F FO 04 BEQ S$S0385 ;Lo byte in .A

NXSTAT

.» 0381 A0 00 LDY #$00 ;Ptr to present line in $5C
.r 0383 Bl 5C LDA ($5C),Y ;Ptr+4 points to text for
., 0385 18 CLC sthis line

.r 0386 85 5C STA $5C

.r 0388 69 04 ADC #S04

.r 038A 85 5A STA $5A

.r 038C 8A TXA

.r 038D 85 5D STA S$5D

.sr O038F 69 00 ADC #S00

., 0391 85 5B STA S5B

.r 0393 C8 INY :.Y=1

.r 0394 Bl 5C LDA ($5C),Y ;chk for null link, endprog
., 0396 FO A2 BEQ S033A ;if so, #Label not found

., 0398 AA TAX ;save next line hi byt in .X
., 0399 88 DEY ;.Y=0

- 16 -



MATCH

oy
o7
o7
o7
.y
o7
.7
o7
.7
oy
o7
o7
o7
.y
o7
oy
oy
o7

039A
039C
039E
03A0
03A2
03A4
03A6
03A8
03AA
03AB
03AD
03AF
03B1
03B3
03B5
03B7
03B9
03BB

Bl
FO
Cc9
FO
C9
FO
D1
DO
c8
DO
Bl
FO
C9
FO
C9
FO
C9
D0

5A
OF
3A
0B
20
0B
77
D7

ED
77
0C
2C
08
3A
04
20
C4

;Match found.
line of BASIC text with JSR SETLAD, then skip over to the
#Label that begins this line using JSR SKPSTT, and resume
normal execution,
must prepare the stack for the eventual RETURN statement.

o7
o7
o7
oy
o
oy
o
o7
.7
o7
o7
oy
o
o7
.y
.7
o7
o7
o7

03BD
03BE
03Co0
03C2
03C3
03C5
03C6
03Cs8
03C9
03CB
03CC
03CE
03CF
03p1
03D2
03D4
03D5
03D8
03DB

HOOKUP

o7
or
sy
o7
oy
o7
oy

03DE
03EO
03E2
03E4
03E6
03ES8
03EA

28
BO
A5
48
A5
48
A5
48
A5
48
A9
48
A9
48
A9
48
20
20
4C

A9
85
A9
85
A9
85
60

15
78

77
37
36
8D
Cé6
Cc3
CD

00
76

4C
70
47
71
03
72

C7
Cc8
00

LDA
BEO
CMP
BEQ
CMP
BEQ
CMP
BNE
INY
BNE
LDA
BEQ
CMP
BEQ
CMP
BEQ
CMP
BNE

PLP
BCS
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
LDA
PHA
JSR
JSR
JSR

LDA
STA
LDA
STA
LDA
STA
RTS

($5A) ,Y
S03AD
#S$3A
$03AD
#520
$03AD
($77),Y
$0381

$039A
($77) ,Y
SO03BD
#$82C
$03BD
#S3A
$03BD
#5520
$0381

First, howeve

$03D5
$78

$77
$37
$36
#S8D
#$C6
#$C3
$C7CD

$C800
$0076

#84C
$70
#$3D
$71
#503
$72

- 17 -

:Test for #Label terminator
snull (end of line)
;colon (end of statement)

;No terminator--test against
;given #Label--to NXSTAT if
;not this one. Match so far
;test nest character:
;forced branch

;Terminator found this line
;test given #Label for term.
;terminatrs are null, comma,

;colon,

:blank.
;No terminatr, try next line

We transfer BASIC execution to the appropriate

r, if we have a GOSUB, we

;Recall THEN/GOTO vs GOSUB
;Carry set for THEN/GOTO

;Carry clear, so put
;:rtn data on stack

; (*= #SB7)
; (%~ #S49)
;JSR SETLAD (*-~ SB850)

;JSR SKPSTT (*- $B883)
;JMP to CHRGOT and return

;SYS here to engage (990)



Editor's Note

Here are two BASIC loaders for this newest rendition of the
BASIC Label Support Interface; one for BASIC 2.0 and the
other for BASIC 4.0. For those using disk with BASIC 4,
you'll need to move the routine. BASIC 4.0 disk commands use
parts of the 2nd cassette buffer (826-1017) and will clobber
it good! You could move it up high in memory and seal it
off, but the 1lst cassette buffer (634-825) will do nicely
(unless you're using cassette #1 too). To set up the routine
here, simply change AD=826 to AD=634. In this case, the
activating SYS will change from SYS 990 to SYS 798.

90 REM *** BASIC LABEL SUPPORT INTERFACE DEMO ***
100 FORI=1TO3

110 ON I GOSUB #SuUBl, #SUB2, #SUB3
120 NEXT

130 GOTO #ALLDONE

140 :

150 #SUB1:PRINT"SUBROUTINE";I:RETURN
160 :

200 #sUB2

210 PRINT"SUBROUT";I

220 RETURN

300 :

310 #SUB3 ¢ PRINT"SUBROUT 3

320 RETURN

500 :

510 #ALLDONE : PRINT"END ALLDONE

- 18 -



900
910
920
930
940
950
960
970
980
990
1011
1022
1033
1044
1055
1066
1077
1088
1099
1110
1121
1132
1143
1154
1165
1176
1177

900
910
920
930
940
950
960
970
980
990
1011
1022
1033
1044
1055
1066
1077
1088
1099
1110
1121
1132
1143
1154
1165
1176
1177

REM BASIC 4.0 LABEL SUPPORT INTERFACE
AD=826
CH=0 : REM RESET CHECKSUM
FOR J=AD TO AD+176
READ X : CH=CH+X
POKE J, X

NEXT
PRINTCH : REM PRINT CHECKSUM

REM *** CHECKSUM SHOULD EQUAL 21952 ***

END

DATA 76, 110, 184, 230, 119, 208, 2, 230,
DATA 162, 255, 228, 55, 240, 6, 161, 120,
DATA 5, 104, 170, 76, 118, 0, 104, 170,
DATA 240, 26, 201, 47, 240, 22, 201, 18,
DATA 201, 236, 208, 110, 104, 104, 32, 112,
DATA 208, 249, 76, 226, 184, 24, 104, 8,
DATA 41, 160, 0, 240, 4, 160, o, 177,
DATA 92, 105, 4, 133, 90, 138, 133, 93,
DATA 91, 200, 177, 92, 240, 162, 170, 136,
DATA 15, 201, 58, 240, 11, 201, 32, 240,
DATA 208, 215, 200, 208, 237, 177, 119, 240,
DATA 240, 8, 201, 58, 240, 4, 201, 32,
DATA 176, 21, 165, 120, 72, 165, 119, 72,
DATA 165, 54, 72, 169, 141, 72, 169, 183,
pATA 72, 32, 80, 184, 32, 131, 184, 76,
paTa 76, 133, 112, 169, 61, 133, 113, 169,
DATA 96

: REM ACCUMULATE SUM

REM BASIC 2.0 LABEL SUPPORT INTERFACE

AD=826

CH=0 : REM RESET CHECKSUM
FOR J=AD TO AD+176

READ X : CH=CH+X : REM ACCUMULATE SUM
POKE J, X

NEXT

PRINTCH : REM PRINT CHECKSUM
REM *** CHECKSUM SHOULD EQUAL 22127 ***

END g

DATA 76, 235, 199, 230, 119, 208, 2, 230,
DATA 162, 255, 228, 55, 240, 6, 161, 120,
DATA 5, 104, 170, 76, 118, 0, 104, 170,
DATA 240, 26, 201, 172, 240, 22, 201, 143,
DATA 201, 105, 208, 110, 104, 104, 32, 112,
DATA 208, 249, 76, 95, 200, 24, 104, 8,
DATA 41, 160, 0, 240, 4, 160, o, 177,
DATA 92, 105, 4, 133, 90, 138, 133, 93,
DATA 91, 200, 177, 92, 240, 162, 170, 136,
DATA 15, 201, 58, 240, 11, 201, 32, 240,
DATA 208, 215, 200, 208, 237, 177, 119, 240,
DATA 240, 8, 201, 58, 240, 4, 201, 32,
DATA 176, 21, 165, 120, 72, 165, 119, 72,
DATA 165, 54, 72, 169, 141, 72, 169, 198,
DATA 72, 32, 205, 199, 32, 0, 200, 76,
DATA 76, 133, 112, 169, 61, 133, 113, 169,
DATA 96

- 19 -

120,
201,
104,
240,

165,
92,
105,
177,
11,
12,
208,
165,
72,
118,

138,
35,
201,

201,

: REM DISK USERS, CHANGE TO AD=634

166

72
240

72

44
166
133
133
240
119

40
72
195
169
114



4022 Printer Notes

First I'd like to mention that a new ROM is available
for the 2022 printer. The 901472-07 replaces the original 03
ROM and the subsequent 04. Recall, the 03 forced a carriage
travel for each line feed and the 04 would occasionally lock
into lower case. The 07 fixes all previous bugs, but due to
2022 mechanics it can't give bi-directional print. For
details on the 07, contact your nearest Commodore dealer.

Now on to the 4022. Faster, sleeker, quieter, a nicer
character set, plus all the features of the 2022 make the
4022 a bargain at only $995 Canadian. The 4022P has since
replaced the 4022. It has all the 6 features of its
predecessor with bi-directional print capability added. This
new ROM for 4022s is available for retrofitting.

The manual has a few minor oversights which we'll clear
up now:

1) Page 31 states, "...l144 steps per inch, so a declared
value of 18 produces 8 lines per inch." It should read,
"ee.195 steps per inch, ...28 produces 8 lines per inch.,”

2) Page 31 also says, "PRINT#6,CHRS$(144) produces lines
spaced one inch apart." Secondary address 6 does not
accept values over 127. Therefore CHRS(127) will result
in maximum line spacing (approx. 1/2 inch).

3) Next it says, "default value is 24 for the standard 6
lines per inch." Change this to 36.

Here are some line spacing values for secondary address 6
(lpi = lines per inch):

CHRS Value Result Comments

1 195 lpi ;characters will overlap
7 25 1lpi ;characters still overlap
12 16.6 1lpi

14 14.2 1pi

21 10 lpi scharacters stop overlapping
28 8 lpi

36 6 lpi

64 5 1pi

66 4 lpi

97 3 lpi

The only other difference we've found occurs when
"skipping"” from one formatted field to the next. Like the
2022, the 4022(P) supports 'printing data according to a
previously defined format'. In order to "skip" from one
field to the beginning of the next, it was necessary to send
a CHRS(29), or 'Cursor-Right'. This still applies to alpha
fields, but when sending numerics to secondary address 1 on
the 4022, the skip character is no longer needed. It seems

- 20 -



that the 4022 recognizes the cursor-right that the PET/CBM
tags to the end of numerics and numeric variables when

output. For example:

2022: PRINT#1,A;CHRS$(29) ;B;CHRS$(29) ;C
4022: PRINT#1,A;B;C

If the extra cursor-rights are sent to the 4022, the printer
will skip two fields instead of just one.

- 21 -



Turning The Switch ?... Allow Your PET! Kevin Erler,
Edson Alta.

After spending upwards of $3000 on your home computer,
you'll find yourself with a brilliant machine that can
perform fabulous feats of thinking, play master chess to
perfection, balance your budget, and calculate the cost of
heating your home, but, physically, can it DO anything?

What to Use:

The problem of computer control has been addressed with
solutions ranging from the complex A.C. conducted control
signals to the simple (and cumbersome) relay switching
systems. I chose the former, however, as mean as it sounds,
it is actually quite simple. The interface that follows
implements an already developed, and readily accessible
device called the BSR-X10 home control system. The system
¥-10 features control of sixteen different electrical
appliances using the different modules. The control can be
remote (through the command console) or local (by using the
appliance's actual switch). Lights have additional ability
to have their intensity varied. The BSR-X10 system is
available for approximately $40 (plus modules).

The %-10's keyboard (fiqure 1) is very straight forward.
The number of the appliance or lamp is entered, followed by
the command (on, off, bright, or dim). The two other keys
are to allow all of the devices attached to the system to be
turned on or off (ie. ALL ON, ALL OFF). The wvariable
intensity of the lights is determined by the amount of time
the BRIGHT or DIM switch is held down. The vast increase of
the computer's realm of control can be easily imagined if the
computer could grasp controcl of these few buttons.

How To Do It:

Technically, the unit is built around a chip called the
542-C, which supports a 3 by 8 matrix keyboard. The chip
first puts a -5 volt pulse on the first strobe line, and
scans for the same pulse on the eight input 1lines. If it
doesn't see one, the unit will carry on with the second
strobe line, and so on. The rate at which it strocbes these
lines is about 3780 times per second, and the input on the
appropriate pin must be present at that exact moment. As is
easily seen, this incredible speed can provide slight
problems. To overcome this huge timing problem, one could go
to either software or hardware. While software would present
us with very complicated programming tasks as well as the
need for a program that would have to run constantly, the
hardware approach proved quite simple. By using a 74LS153
multiplexing chip, the three strobe lines could be fed into
it, and the computer could select which of the three could be
gated through to the output pin (by use of a two bit binary
input). With this done, the output would then be pulsed at
the rate as the selected strobe line. This output could then
be used as an enable line to a 3 to 8 line binary decoder
(741.8138). With all this, the data from the computer could
be fed right into the X-10. Simple, right? Right, but we're
still not gqguite finished.,



For the average person that isn't really interested in
how the hardware works, all that has been done to this point
is the formulation of a very simple two piece interface. No
thinking required... at least not yet. Read on...

T Power:

The problem is that the BSR system operates on negative
logic, while the computer operates on positive 1logic.
Basically, the two power supplies are incompatible.

The Solution: we isolate the BSR system from the power
line, and then tie the ground side of its chip's power into
the computer power supply. The only additional part required
is an 1isolation transformer, the cheapest of which is a
shaver transformer like the one in your bathroom (available
at your local hardware store). Cut off the plug from the BSR
system and splice its power cord into one side of the
isolation transformer. Now, after removing the cover from
the X-10 (it will only come off part way), cut the plastic
insert that holds the power cord in place (remove it
totally), and take out the screws that hold the bottom PC
board in place. Removing this board, locate the two printed
circuit strips as indicated in figure 3, and very carefully
scratch out these two lines with a small knife. Make sure
there is no connection after you're done. Next, solder a
piece of wire (about three feet) to each of the points shown
in figure 3. Also solder a third wire onto the indicated
jumper in figure 2. This wire connects to +5 volts in the
computer so cut an appropriate length. Replace the PC board
in the BSR system, allowing all three wires to exit out the
same hole as the power cord. Run the first two wires over to
the isolation transformer, and splice them (one to each side)
along with an A.C. cord to the unused side. With all this
assembled it should look something like figure 4.

Finished 22

The hard part is over. Now, with 5 minutes work, we can
slap together the interface in figure 5. The numbers on the
far right hand side are the pin numbers of the 542-C.
Perhaps the easiest way to connect the interface to the X-10
is to remove the top PC board from the X-10, and solder the
wires directly onto the chip. You are now completely
finished with the hardware!

A few quick notes, this device is meant to connect to
the User Port (ie. the 6522 VIA), not directly to the CPU.
The keyboard of the BSR will not function with the interface
attached, however, I believe the remote control unit
available for certain BSRs would. Although it would be quite
easy to build this interface on epoxy perfboard, I just used
a breadboard (available any electronic shop). Finally, a
quick rundown of the parts required:

BSR-X10 (model #014311) ..... approx. $40
TALS138 cveeeeecesncesessasss APProx. S 1
TALS153 cteeeecescscsessncsecnss APProx., $ 1
Isolation transformer e¢...... Approx. $ 5

Total approx. $47

- 23 -



The Software:

All of the software required to operate the system is
based on some simple numbers which represent the different
keys of the X-10's keyboard. The following table lists these
necessary codes:

Key Code Key Code
1 100 12 56
2 36 13 116
3 112 14 52
4 48 15 124
5 104 16 60
6 40 ON 80
7 108 OFF 88
8 44 DIM 92
9 96 BRIGHT 76

10 32 ALL ON 72

11 120 ALL OFF 84

First, plug in your BSR system on turn on your computer.
If there's no smoke then you've done everything right.

Next, set up the Data Direction Register (DDRA) of the
6522 to all outputs except PAQ and PAl: POKE 59459,252

Now, our first command can Dbe entered with these
stipulations:

- Commands are issued to the DATA OUTPUT REGISTER, 59471
Directly after a command is issued, it should be turned off
- A command is turned off with: POKE 59471, 128

After a command is turned off, another one should not be
issued for at least 0.2 seconds

For example, to turn all appliances off, this command
could be entered directly from the keyboard:

POKE 59471, 84 : POKE 59471, 128
For a sequence of two commands:

POKE 59471, 100 : POKE 59471, 128 : FOR I = 1 TO 200 :
NEXT : POKE 59471, 80 : POKE 59471, 128

The above would turn device #1 on. To tidy things up
for a program, the following subroutine could be called after
each command is sent:

10000 POKE 59471, 128 :FOR I = 1 TO 200 : NEXT : RETURN
One final note; when using the 'DIM' or 'BRIGHT'

commands, a certain delay is necessary before the command is
turned off:

POKE 59471, 92 : FOR I = 1TO400 : NEXT : POKE 59471, 128

This may dim yocur 1light about half, experiment as
reguired.

- 24 -



But Wait!

Imagine waking up to a dim light which is slowly gaining
its proper form. The radio comes on with the morning news (a
pre-determined time in your program), and downstairs your
coffee is almost ready. As you leave your room, the light
winks out and the room you enter is suddenly completely 1lit.
Sitting down to catch the weather on TV, all that is
necessary is a whisper, "TV, please". 1It's on.

Sound 1like fantasy, it isn't so hard., Actually, with
the system you have just built, the first half is already
possible., With the addition of a couple of photo-cells, and
a speech recognition unit, so is the rest. From here the
possibilities are, of course, endless.

Editor's Note

Congratulations Kevin on an excellent idea AND
implementation. A couple footnotes that deserve mention: The
BSR system doesn't connect directly to your 1lights and
appliances, but rather through modules that plug into the
wall. The appliance then plugs in to the module which is
serviced by a high frequency signal placed on your house
wires by the main command unit. Several different types of
modules are available for regqular wall sockets, 1light
switches and appliances, The BSR system is available at any

Eatons hardware department.

Secondly, a unit Kknown as the Cognivox will do voice
recognition AMND speech synthesis of up to 32 words and/or
phrases, For more information, contact Voictek, PO Box 388,
Goleta CA, 93116. Or call 805 685 1854.

NI TRE TR COWRAND
i CONTOLE

T . FWGURE A

SRR - Ret - XI0 R




/}d MG ANAL wzfzﬂﬁku..uefg

B00 . SERTER TV yg €10 ¢ ivw

.A “T ?M BIn TOLOR - KA 0L
< 34 nold SN NIEA
"AWNO HSH

INMOTYAN BN
AASN Y3dv w,zz_,/

'SNOVADANNOT —
S04 SN .
CewWL SN — Y

w0 —

BEY O 9O 32D

O

QA0
A 3IMNOA:

- 26 -



MDA Bw ARL DNIN&NL

AMNO  woa

SN A3y iod
ONQTNY ROA3-

Q)n,uﬁ Vil S\ay

Y SIBAG |
RO syl BRI NI 0| S 0% )
VT ayan] @ 0= WOLICE - MAN Woalod v

. q@ C w&ﬁ0~u _ SOMIMYAA
Nere)
S\ OV wW, z/
ARG AN n,

ARO[V AN HAMW

Ao
SIHL OL  AdIN
ASdld HAAN0S

D7



THOLING wi.r SNINGNL SSURAY

WAL AWQ| W,.w e Z:/wx w,?(Zv G A0 AT L2AV e

b e [V IR oS RO SIS Dt

L3NS, CTNUOAS™IN QA .V.w!/ﬂw/dou Anvd

T | wmjﬂu/u B » 2N MG

o W N
SACIDE WOMA /

// LAWY
N >m,+ QL

S N2 NV Cavo”,

=hels

LMD vsg wody
QRO 2INOA

O, QAR A3 ,z.
i, n.:)/w ﬂu R\ Wl, /
s Pest H.”.. ’
,/ ST -
DN S A GRS 2|8 | !
~ 9 Mi\
X
ANV Qi SNVYR L

NOWAWY 1091

- 28 -



OTX -

QAN

SN
YNNG
1N31ANR

a\s!

Qad
g

a4
aag
Qg
ag

ad

Oclad g0 O~

7 YAV ANL .wZ/ZKﬁP B :-m.ﬂmwm
B0 aival. BN NIAD ] § 30T 30
~ TS DWVHIRIO - L
S 2 m ,Dnupu . ,.02_2&&0
NGt a =
37 S NS ..@..lh_!
~J
>~ YRy
AL ,
e : I
_ . i Fa=a |
— | — : . f v Fﬁ“.\b_ Mlml
| ’ — ) > 'N.l J—
NNTNOD ,
LT -
2C|— NG+
\c 5l
03T |- -
MV,. h I@lc
[V - Sr
: |
- , T > s
Mo - M QO ek
ToA S




Machine Langauge Auto-Location Jim Butterfield,
Toronto

When a program like Supermon or Tinymon loads into its
computer and RUN is given, it builds a copy of the "real"
program 1in high memory. There's a need to do this:
different computers have different memory sizes, and we want
to find the top of memory wherever it is. More: the
computer might already have something else near the top of
memory (such as a wedge program) and we want the new program
to fit neatly below it.

This calls for an auto-location program, The object program
must be packed into high memory. This is often more than
just moving the program, since some things may need to be
changed with the move. If you have a program that uses only
branches - no jumps, no in-program subroutines, no tables -
you may be able to get away with a simple move operation.
But any instruction that uses an in-program absolute address:

jumps, subroutine calls, and tables - will need to be
adjusted.

We need to build a relocatable program module. Something
that says, "This byte is normal so we may just move it; but
that pair of bytes is an address and must be recalculated for
the new location".

Ground Rules.

We need a scheme which marks addresses so that the proper
arithmetic may be performed. There's one requirment as to
how you write the program: it may be summarized as "all
addresses must be in one piece"..

The rule makes sense: it would be difficult to perform
arithmetic on an address whose two bytes were scattered in
different parts of the program. For users with assemblers,
the rule translates to: never use the < or > functions for
high and low byte.

So if we wanted to place the address of TABLE into indirect
address INDAD, we would avoid coding: LDA #<TABLE :
STA INDAD : LDA #>TABLE : STA INDAD+l. Instead, we'd define
the table address in memory with TABLAD .WORD TABLE and
perform the above setup with LDA TABLAD : STA INDAD :
LDA TABLAD+1 : STA INDAD+l. We've used four more bytes but
gained a major benefit: the two bytes representing the
address of TABLE are now stored together (at TABLAD) and we
can adjust this address easily when we wish to relocate.

The Method.

The way we build a relocatable module is quite easy. Any
time we see an address that will need relocation, we place a
zero above it. As we repack the program (from the top down)
the zero will signal that a relocatable address follows.



That's all very well, but what do we do with real =zeros?
There will be many zeros in the program itself, and we don't
want them to trigger a false relocation calculation. 1In this
case, we change the zero to two zeros in the relocatable
package. The relocation program will spot this and change it
back to a single zero.

In order to do arithmetic on the addresses, we need to know
where they are pointed in the first place., To relocate from
$1000 to $4000, for example, we need to add $3000; but we
must know that we are starting from $1000. I use the
following convention: addresses are written so that the top
of the program plus one is $0000 - that is, the last byte of
the relocatable program is S$FFFF. The program can't really
go there, since that's ROM space, but it makes the arithmetic
easy. We can look at an address in the relocation package as
a signed number: address S$FFCO can be viewed as "64 bytes
from the top of the program". If our real top-of-program
turned out to be $8000, which would be correct for a 32K
machine, we would translate the sequence 20 CO FF 00 to
20 CO 7F ... note that the zero disappears; it's the
relocation flag. How did we get the new address S$7FC0? By
adding the relocation address, $FFC0, to the top-of-program,
$8000.

Generating the Relocatable Program.

How do we manufacture this package with zeros added and
addresses recalculated, ready for relocation? With an

assembler it's quite easy.

First, we assemble two versions of the program at two
different locations. That's easy enough to do: we just
change the *= statement at the start of our source code.,

Then we run a simple compare program which compares the two
object programs we have assembled, starting from the top.
Each matching byte is copied 1into the relocation area
unchanged; if it's a zero, an extra zero is added. If the
bytes don't match, we have a relocatable address: in this
case, we insert the zero plus the recalculated address into
the relocation package, It's an easy job: my "relocate
builder" is a BASIC program of about a dozen lines.

Stopping.

As we work down from the top we need to detect when we have
reached the end of the program: this is true of both the
relocate builder and the relocating program itself. There
are many easy ways of doing it. The program can test to see
if the last address has been reached. Alternatively, we can
put some sort of "flag" into the coding itself to detect the
end. In TINYMON, I use a value S$BF which is never used in
the program as a simple detection. A more complete method
might be to use a zero with a value of 1 stored below it.
It's up to you: whatever works is OK.



VIC Note.

In the VIC, we have one more problem to solve. We can find
the top of memory (locations $37 and $38) but our program
might fall into different memory space, depending on what's
plugged in. Use pointers to find your own program (try $2D
and $2E) and everything should work out nicely.

Summary.

You can pick apart the code of SUPERMON or TINYMON and see
how it's done. You can develop your own programs. But if
you understand the principles of a relocating program
package, you can develop significantly more useful programs
which will adapt to a wider variety of machine
configurations.

Editor's MNote

The machine code dissassembly to follow is Jim Butterfields
relocator modified slightly by Dave Hook for use with his
Vicloader for PET/CBMs (see Transactor #5, Vol3). Dave
eliminated the JMPs and JSRs in Jim's original utility so
that the relccator can be relocated. For Vicloader, it
starts at $0640, but you can move it anywhere; higher if you
want more BASIC underneath it, or lower for larger object
programs.

Notice that the relocator starts with the end of the object
program since this will be the first byte to be packed 1into

high memory. This is conveniently pointed at by the Start of
Variables pointer minus 1, which is set on completion of the
LOAD (provided it is .Saved properly).



0400-063F BASIC portion (title, sys address, etc)

0640 A5 2A LDA S$2A ;store copy of

0642 85 1F STA S$1F ;Start of Variables
0644 A5 2B LDA $2B spointer (last byte of
0646 85 20 STA $20 ;object program + 1).
0648 A5 34 LDA $34 ;store copy of

064A 85 21 STA $21 ;Top of Memory

064C A5 35 LDA #35 ;pointer (MemTop)
064E 85 22 STA $22

0650 A0 00 LDY #$00 ;zeroise Y index

0652 A5 1F LDA S$1F ;dec pointer to last
0654 DO 02 BNE $0658 ;byte of object prog.
0656 C6 20 DEC $20 ; (1st byte to be

0658 C6 1F DEC S$1F ;packed)

065A Bl 1F LDA (S$1F),Y ;get obj. prog. byte
065C DO 3C BNE S$069A ;not 0, goto S$S069A
065E A5 1F LDA S$1F :i1f 0, dec pointer
0660 DO 02 BNE $0664

0662 C6 20 DEC $20

0664 C6 1F DEC S$1F

0666 Bl 1F LDA (S$S1F),Y ;and get next byte
0668 FO 21 BEQ $068B ;0? yes, true zero *
066A 85 23 STA $23 ;no, relocatable addr
066C A5 1F LDA S1F ;store high byte in
066E DO 02 BNE $0672 :$23, dec pointer
0670 C6 20 DEC $20 ;and

0672 C6 1F DEC S1F

0674 Bl 1F LDA (S$1F),Y ;get next byte

0676 18 CLC srecalculate lo addr
0677 65 21 ADC $21 ;using MemTop 1lo

0679 AA TAX ;result in .X

067A A5 23 LDA $23 ;recalculate hi addr
067C 65 22 ADC §$22 ;using MemTop hi

067E 48 PHA ;result on stack

067F A5 34 LDA $34 ;dec MemTop

0681 DO 02 BNE $0685

0683 C6 35 DEC $35

0685 C6 34 DEC $34

0687 68 PLA ;retrieve hi addr
0688 91 34 STA ($34),Y ;pack at ($Memtop) .Y¥Y=0
068A 8A TXA ;retrieve lo addr
068B 48 PHA ;1 * save on stack

068C A5 34 LDA $34 ;dec MemTop

068E DO 02 BNE $0692

0690 C6 35 DEC $35

0692 C6 34 DEC $34

0694 68 PLA ;retrieve byte

0695 91 34 STA ($34),Y ;pack at ($MemTop) .¥Y=0
0697 18 CLC ;rather than

0698 90 B6 BCC $0650 ;a JMP

069A C9 BF CMP #S$BF ;last byte?

069C DO ED BNE $068B ;no, goto $068B *
069E A5 34 LDA S$S34 ;yes, set

06A0 85 30 STA $30 ;Bottom of Strings
06A2 A5 35 LDA $35 ;= MemTop

06A4 85 31 STA $31 ;pointer

06A6 6C 34 00 JMP (S0034) ;jmp to program

06A9 BF ;end detector of obj prog
06AA ... ;start of object prog

- 33 -



1981 PET Bibliography Don White
Ottawa 6502 User Group

The following is a bibliography of PET related articles
published in 1981 in 'Creative Computing', 'Kilobaud
Microcomputing' and ‘'COMPUTE!'.

Creative Computing 1981
January

Page 24 Mo PET Peeves-lNew Computers From Commodore
156 Personal Electronic Transactions

February

18 Music Editors for Personal Computers
154 Personal Electronic Transactions

March

26 Wordpro 1 vs CMC
78 A PET Lizzard (Game Listing)
166 Reading Level: Determination & Evaluation (Listing)

April
222 Personal Electronic Transactions
May

96 Break Even Analysis With Visicalc
208 Personal Electronic Transactions

une

26 The TNW 2000

30 Fantasy Games

36 Computer Warfare

88 Software Techniques of Digital Music Synthesis Pt 1

50 The Paper Mate
140 Software Techniques of Digital Music Synthesis Pt 2

August
24 The Last One

122 Tree (Game Listing)
144 PET Nuclear Power Plant (Game Listing)

September - Buyer's Guide
43 Commodore VIC-20



October

54
160
Nov r
65
192
December
76
240
January
10
48
78
188
February
12
56
72
March
8
144
April
10
May
10
179
195
200
June
10
82
177
July
10
104
167

Educational Software and Books
Bombproofing the PET INPUT Statement

Dynacomp Bridge Challenger
PET Screen Line Length

Valdez: A Supertanker Simulation

Helping Students Think About Marriage & Education

Kilob Mic in

PET-Pourri - New PET Monitor
Real-Time Spectrum Analyser
Scramble (Game Listing)

Second Cassette Interface (Hardware Modification)

PET-Pourri - Jinsam
London Computer Club A Huge Success
Portrait Of A Dynamic French Company

PET-Pourri - Handy Utilities
PET Shorthand Compleat

PET-Pourri - VIC-20 Debuts

PET-Pourri - Conversing In Assembly Language
A PIE Taster's Report

Soulful Software Sounds (Listing)

Find That Program! (Listing)

PET-Pourri - ROM Packages From Skyles
Once Upon A Time (Listing)
Expand PET Memory (Listing)

PET-Pourri - 8032 Data Handlers
A One-Two Punch For CBM/PET Graphics
Get On The PET Instrument Bus (Listing)



August

10
152

PET-Pourri - Commodore Colors NCC
What's The Difference (Listing)

September

12
October

10
195

November

14
50

December

10
66
114
178

122
123
124

February

16
30
34
54
60
97
103
104
109

PET-Pourri - CBM Utilities

PET-Pourri - Commodore's Big Push
PET Goes To The Polls (Listing)

PET-Pourri - VIC Expands Its Horizons
Popping And Pushing Permutations In BASIC

PET-Pourri - Word Pro Enhancement

Putting The Joy Back Into Programming (Listing)
A BASIC Assembler For The PET (Listing)

Put To The Test By A Computer

COMPUTE!

The Mysterious & Unpredictable RND Pt 1
CURSOR Classifications Revisited

ODDS & ENDS..re PET cassette tape

The Screen Squeeze Fix For CBHM 8000

Horray For SYS

Machine Language:Scanning The Stack

The PET Revealed & Library Of PET Subroutines
A Visible Music Monitor

Disk-0-Pro

Detecting Loading Problems & Correcting Alignment
Spooling For PET With 2040 Disk Drive
Variable Dump For New ROM PETs

The 32K Bug

An Ideal Machine Language Save For The PET
PET Metronome

PET IEEE Bus:Standing Room Only?

PET/CBM IEEE Bus Error

LED - A Line-Oriented Text Editor

Simulated PRINT USING

The Mysterious & Unpredictable RND Pt 2

Basic Math For Fun & Profit

PET Spelling Lessons Your Student Can Prepare
Contour Plotting

Relocate

Mixing & Matching Commodore Disk Systems
Memory Calendar



March

114
116
118
120
124
126
127

26
34
46
52
56
117
122
126
130
136
138
142
144
146

152

Crash Prevention On The PET

Machine Language Printer Command

ODDS & ENDS On PET/CBM Files

Three PET Tricks

PASCAL On The PET

The PEDISK

A Disk Operating System For The CGRS PEDISK

Taking The Plunge-Machine Language Programming
Getting The Most From Your PET Cassette Deck
The Mysterious & Unpredictable RND Pt 3

A CAI Program Called LINEAR EQUATION
Keyprint Revisited

Learning About Garbage Collection

PET Machine Language Graphics

Disk File Recovery Program

PET Exec Hello

A Flexible Input Subroutine

Universal Tape Append for PET/CBM

Commodore VIC-20:A First Look

How To Be A VIC Expert

The Mysterious & Unpredictable RND Pt 4
Micros With The Handicapped

Matrix Row Operations

Partition and Load

Relative File Mechanics

COPLOT

ROM Expansion For The Commodore PET
Working With BASIC 4.0

Papermate Word Processor

Dissecting C.W. Moser's ASSM/TED 1.0
PET File I/O and Machine Language

How To Get Started In Machine Code And Not Go
Crazy With A Routine For Two Joysticks
Machine LAnguage:The Wonderful Wedge

The Mysterious & Unpredictable RND Pt 5
Land Of The Lost - Cassette Filing System
EPIDEMIC

Naming Compounds

A Fast Visible Memory Dump

Getting To The Machine Language Program

A Thirteen Line BASIC Delete

Calculated Bar Graph Routines On The PET
The Revised PET/CBM Personal Computer Guide
Un-Compactor

-Using The Hardware Interrupt Vector On The PET

PET As An IEEE-488 Logic Analyser
Running 40 Column Programs On A CBM 8032



June

22

52

94

98
100
102
106
110
116
120
128
130
131
132
132
133

142
146
150
155
156

August

30

50
105
109
120
124
128

RAN/ROMs~A New Style Of Memory?

Mapping & Modifying Unknown Machine Language
Ideal-Gas Law

Relocation Of BASIC Programs On The PET

Memory Partition Of BASIC Vorkspace

Machine Language Code For Appending Disk Files
Quadra-PET:Multitasking On Your PET

PET/CBM Disk Formats

Interfacing With The User Of Your PET Programs
Keeping Tabs On Your Printer

Assembler In BASIC For The PET

Uncrashing

Notes On The PET SAVE Command

Optimized Data System PH-001 2114 RAM Adaptor
Discovering Tape File Hames

Petbug

Machine Language Utility Pac

Saving ML Programs on PET Tape Headers
Commodore POM Systems: Terminology
SCREENER:4 Screen Utility Routines
Machine Language: Comparison Shopping
Using TAB, SPC and LEN

Minimize Code And Maximize Speed

Add A Programmable Sound Generator

The CBM "Fat 40" - Boon Or Bane?

Digital Arrayment

Keyword

CBM/PET Loading, Chaining, and Overlaying
Converting PET BASIC Programs To ASCII Files

Augqust - Hom Education Computin

4
9
11
16

Exploring The Rainbow Machine
VIC As A Super Calculator
Custom Characters For The VIC
The Confusing Quote

September

30

36
103
108
118
120
122
124
128
134
136

The Column Calculator

PET, Atari, Apple: On Speaking Terms
The Unwedge-Tape Append And Renumber
STP-488 A Smart Terminal Prodgram

4.0 Garbage Collection: A Small Bug
Using The Monitor Cn The PET

Odds And Ends: Relative Files on BASIC 3.0
2040 Disk Program Listing

All About LOADing PET Cassettes
Graph Plotting Routine

Linelist



October
28

30
48

126
132
138
140
143
146
149
156
159

Novembe

26
28
38
54
136
142
145
147
148
151
155

December

38

54
130
134
142
150
154
158
160
163
166
168
172

VIC-20 News

Various VIC Memory Locations

Update Floating Color, Floating Screen

iore Machine Langquage For Beginners
Undeletable Lines

Practical PET Printing Primer

A Fat Forty Bug

Train Your PET To Run VIC Pregrams
Converting To Fat-40

High Resolution Bar Graphs For The PET
Waking Up The PET Screen

Interfacing A BSR X-10 AC Remote Control System
Using Non-Pin-Feed Forms In Tractor Printer
Why You Should Use PEEK(155) Instead Of GET

A Flower Sale Program

SuperPET's Super Software

SuperPET: A Preview

Bits, Bytes And Basic Boole

POWER

The PET Speaks

Machine Language: Monitoring Progress
Directory For 3.0

Inversion Partitioning

A Personal News Service

FOR/NEXT GOSUB/RETURN, And The Stack

Subscript Heap Sort

Maze Generator

A Look At SuperPET

SUPERMON

PET To PET Communication Over The User Port
Replacing The INPUT# Command

Typing Foreign Language Text With The CBM Printer
Three Reviews: Superchip, Spacemaker, Sort
Machine Language: Jumbo Numbers

File Recovery

Looney Line Numbers

Mine Maze

COMAL: Another Language

- 39 -



Two Terminal Programs: IEEE and RS232

Recall in Transactor #4 we mentioned Steve Punters'
Bulletin Board System in Mississauga, Ontario. Commodore is
now distributing Steves' BBS as a package and we've since
delivered about 15 to date. Although all 15 may not be set
up as public systems, any that are will be listed with their
phone numbers on Steves board (see Transactor #4 for
operating hours).

Steve has also written two terminal programs for use
with PET/CBMs and this BBS software. Although any ASCII
terminal can access the system, only these two programs are
capable of up/downloading files to/from this BBS. Programs,
SEQ and WordPro files are all transmitted flawlessly using a
special checksum protocal. Once you've sent a program to the
BBS, others can then download it with one of these programs.
Likewise, you can receive programs that others have
submitted.

The two terminal programs are identical in operation.
The one you choose will depend on what type of modem (300
baud) you have; "TERMINAL.Ixx" is for use with IEEE modens
(Commodore 8010, Livermore Star); "TERMINAL.Rxx" is for use
with RS232 modems (Novation Cat, General DataComm, etc.).
These files contain the BASIC part of the programs. The
number "xx" denotes the version number. The ones listed here
are version 11l. As new versions are released (and Steve
assures me there will be), you can obtain them from the BBS
using one of these.

Each program has corresponding machine language
subroutines that are LOADed by the BASIC part. "term.ieee"
and "term.rs232" are PRG files that will be generated for you
by the programs 1listed. These are also available for
downloading from the BBS, but are listed there somewhat
differently. “"term.ieee" will be listed as "TERM.I1l1" and
"term.rs232" will be "TERM.R11l". Once again, the "11"
represents the version number. You may be asking, "Why the
different filenames and why does one show a version number
and the other not?". A new edition of the BASIC does not
necessarily mean a new machine language part, and vice versa.
For instance, TERM.Il12 may be released for use with the
existing TERMINAL,.Ill. When vyou get it, simply rename
"TERM.I12" to "term.ieee" and away you go; this way no
editting is necessary for TERMINAL,Ill.

There are two additional files associated with the RS232
terminal software. "rs3" and "rs4" are machine 1language
subroutines that drive the Parallel User Port as an RS232
Port. The BASIC part (TERMINAL.R11) will load one of these
automatically; "rs3" for BASIC 2.0 machines and "rs4" for
BASIC 4.0. These programs don't produce 'true' RS232, only
simulated RS232. Therefore, RS232 modem users will need a
special cable to connect their modems to the User Port. For
a description of this cable, see Henry Troups' article
following this one.



In summary, you'll need to enter these programs:

IEEE Modem Users RS232 Modem Users
TERMINAL,I11 TERMINAL.R11
term,. ieee term,rs232

rs3 (for BASIC 2.0)
rs4 (for BASIC 4.0)

Don't forget, those mnemonics inside square brackets
should be replaced by their respective characters and make
sure you SAVE everything before trying it! The programs that
are mostly DATA statements generate the PRG files that are
loaded by the BASIC programs. Before the actual run, put
REMs in front of the OPEN and PRINT# commands (lines 500 &
540) and perform a test run to see if the checksums will
match up. ’

Program Features

These Terminal programs have several features that make
them ideal for communicating with other computer systems as

well as the BBS.

On running the TERMINAL. program, the appropriate
machine code support file(s) will load, and a menu will be
displayed. Press the number of the desired option. Option 1
will always be "Terminal Mode". This engages the modem and
gets you started. Now make your call. When you hear the
tone, place your handset in the modem (unless you have a
direct connect modem) and the carrier light should come on.
Usually you have to hit RETURN once or twice to get a
response. You're now ready to "tele-compute™!

At any time in Terminal Mode you can use the "HOME" key
to display the menu. This does not mean you'll be
disconnected; press 1 again for Terminal Mode and continue
where you left off.

Control Key

The 'RVS' has been implemented as a 'Control Key'. One
difference from an ASCII terminal control key is that it must
be released before typing the Control Character.

Dump_to _Disk

If you wish to dump text to a disk file, select the Open
Disk File option. The Terminal program will ask you for a
filename which will be OPENed on drive 1 unless otherwise
specified. Once back to Terminal Mode, hitting "CURSOR-DOWN"
engages the disk log; "CURSOR-UP" halts disk log; and hitting
"HOME" closes the files and returns the menu.

- 4] -



Print Disk File

Supply the name of an SEQ file and the contents will be
sent to device #4.

Change_Operating Modes

Here you can turn Line Feeds on or off, and change the
paritv of transmission,

Receive/Transmit Programs

As mentioned earlier, to send or receive programs,
WordPro files or SEQ files to or from the BBS, you'll need to
use one of these options. Of course, with other timesharing
systems these functions will have no use since they won't be
using Steves' checksum protocal. On the BBS however, the
LOAD or SAVE commands will ask you for the filename, access
code, etc., and will then display:

Waiting For START Signal!
(or 'A' for ABORT)

The START signal is the sequence of "HOME" followed by the
desired option ie. Transmit or Receive. The Terminal program
will ask for a filename and the transfer begins. When
finished, you'll be returned to the BBS for your next action.

When you try a LOAD or SAVE on the BBS, you'll first be
asked for a 'Program Access Code'. This is more or less a
reminder that you must have the proper terminal software for
up/downloading. The universal Program Access Code for public
Bulletin Boards (using Steve Punters' software) is "EEZOO".
If you give the code and attempt a transfer without one of
these terminal programs, the BBS will abort shortly
afterwards.

That's about it! Tele-computing is on the rise in North
America. With this terminal program, you'll be able to
communicate with any text oriented systems. Picture oriented
systems such as Telidon require a totally different type of
terminal software, but this also requires hardware with
highly advanced colour graphics and sending data to Telidon
is even more difficult (and expensive). For now though,
systems like The Source and CompuServe are aquiring new users
daily! Give them a try too, but with this program and the
BBS, you can get terminal program updates FREE for the cost
of a phone call!



137

10

15

20

22

23

25

30

40

70

80

120
130
140
145
146
147
160
170
180
100
101
102
103
104
200
201
202
203
204
205
206
207
300
301

- 302

303
304
305
306
307
309
310
311
320
321
330
331
350
351
352
353
500
501
502
502
503
504
505

REM TERMINAL.I11 FOR IEEE-488 MODEMS
IFPEEK(30976) <>76 THENLOAD"TERM. IEEE", 8

POKE53,120:CLR:RES=" ":SE$=" ":M0%=134:R%=0:CS$="0123456789ABCDEF"
RP=5:RS=0:WP=5:WS=0:0PENS5,RP,RS:0PEN6,WP,WS

POKE32767 ,RP: POKE32766 ,RS+96 : POKE32765,WP: POKE32764,WS+96
ML=30976:POKE59468,14:POKE32761,0
OPEN1,8,15:POKE556,0:POKE552,0:POKE553,1
DN$="[DN DN]":GOTO80
GET#5,AS,A$:A=PEEK(59426) : SYSML+0:CLOSE11:POKE32761,0
PRINT" [CLR] "X$:PRINT" [DN]FUNCTION: {DN}"

PRINT"1 - TERMINAL MODE"

PRINT"2 - RECEIVE A PROGRAM"

PRINT"3 - TRANSMIT A PROGRAM"

PRINT"4 - OPEN DISK FILE"

PRINT"S - PRINT DISK FILE"

PRINT"6 - CHANGE OPERATING MODES"

GETAS:IFA$S=""THEN160
ONVAL(AS$)GOT070,5000,6000,1000,2000,3000

GOTO160

0 CLOSE1ll:PRINT"[DN]NAME OF DISK FILE":PRINT"DEFAULT IS DRIVE 0?
0 PRINT">"; :GOSUBB00O:IFBS$=""THENSO
0 IFMIDS(BS,2,1)<>":"THENBS="1:"+BS
0 OPEN11,8,11,"@"+B$+",S,W":GOSUB9000: IFESTHENPRINTESS$:GOT01000
0 POKE32761,1:GOTO80
0 PRINT"([DN]NAME OF FILE?":PRINT">";:GOSUB8000:IFBS$=""THEN80Q
0 CLOSE1ll:0PEN11,8,11,B$:GOSUBS000:IFESTHENPRINTESS:GOT02000
0 PRINT"[DN]ASCII OR CBM TYPE OUTPUT?":PRINT">";:POKES555,0
0 GETAS:IFAS$=""THEN2030

0 IFA$=CHRS$(13)THEN8O

0 IFAS="A"THENPOKES55,0:G0T02070

0 IFAS<>"C"THEN2030 .

0 PRINTCHRS(ASC(AS)OR128) " [DN]":SYSML+3:CLOSE1l:GOTO80

0 PRINT" [CLR)JOPERATING MODES"

0 PRINT"—=-—emme e e m e [DN] "

0 PRINT"1) AUTO LINE FEED: [DN]"

0 PRINT" OFF" : PRINT" ON[DN] "

0 PRINT"2) PARITY:|[DN]"

0 PRINT" MARK" : PRINT" EVEN" :PRINT" ODD[DN] "

0 PRINT"3) EXIT "[CLR]" = «clear screen

0 605033500 an "[HOME]" = cursor home

0 GETAS:IFAS$=""THEN3090 “(up]" = cursor up

0 ONVAL(A$)GOT03200,3300,80 “[DN]" = cursor down

0 GOT03090 "(cL]” = cursor left

0 GOSUB3510:A=PEEK(553) :A=A+1:IFA=2THENA=0  u(CRi* = cursor right

0 POKESS53,A:GOT03070 “[RVS]" = reverse mode on
0 GOSUB3510:A=PEEK(552) :A=A+1:IFA=3THENA=0 "[OFF]" = reverse mode off
0 PgKE?SZ,AEGOTO?07O 03520 “{ *]" = 1 space

0 A$="[RVS ' OFF]":GOT " - ;

0 AS="["]" [15CR] = 15 cursor rights
0 PRINT"[HOME DN DN DN DN DN ' ' ']";LEFTS(DN$,PEEK(553));A$

0 PRINT"[HOME 10DN ' ' ']";LEFTS$(DNS$,PEEK(552)) ;AS:RETURN

0 REM RECEIVE A PROGRAM

0 PRINT"[DN]NAME OF FILE?"

0 PRINT"DEFAULT DRIVE IS #0":PRINT">";:GOSUB8000:S$=BS

5 IFSS$=""THENPRINT#6,"A"; :GOTO70

0 IFMID$(S$,2,1)<>":"THENSS$="0:"+S$

0 GOSUB5800:S$="@"+SS+TS+",W"

0 CLOSE2:0PEN2,8,2,5S$:GOSUB9000: IFESTHENPRINTESS: CLOSE2 :GOT05010

5060
5065
5070
5080
5090
5120
5130
5140
5150
5500
5510
5520
5530
5540
5550
5560
5570
5580
5800
5810
5820
5830
5840
5850
5860
5870
5880
6000
6010
6015
6017
6020
6030
6035
6040
6050
6055
6057
6058
6060
6070
6080
6090
6100
6110
7000
8000
8010
8020
8030
8040
8050
8060
9000
9010
9020
9030

PRINT#6, "TTTTTTTTTT"; :GOTO5070

GET#5,A$: IFST=0THEN5065

SYSML+18:IFSTTHEN5140

GET#5,AS: IFST=0THENS5080
S1=PEEK(ML-2) : S2=PEEK (ML-1) : SYSML+12

IFS1<>PEEK (ML-2) ORS2<>PEEK(ML-1) THENS5150
SYSML+15:PRINT#6,"[15CR] "; : PRINT"-"; :GOTO5070
CLOSE2:PRINT#6,"SSSSSSSSSS"; : PRINT:GOTO70

PRINT#6," [15DN]"; : PRINT":"; :GOTO5070

PRINT" [DN]TYPE OF FILE:"

PRINT" [DN] (P) ROGRAM, (W)ORDPRO, OR (S)EQ?":PRINT">";
GETBS$: IFBS=""THENS5520

TY$=B$:FL=0
IFBS$="P"THENTS$=",P" :POKES557,0 : PRINT" PROGRAM" : RETURN
IFB$="S"THENTS$=",S5": POKE557,0 : PRINT"SEQ" : RETURN
IFB$="W"THENTS$=",P": POKE557 ,1 : PRINT"WORDPRO" : RETURN
IFB$=CHRS$ (13) THENFL=1 :RETURN

GOT05520

PRINT#6, "UUUUUUUUUU";

GET#5,A$: IFST=2THENS810
IFA$="P"THENTS$=",P":POKE557,0:A$="PROGRAM" : GOTO5860
IFAS="S"THENT$=",S":POKE557,0:A$="SEQ" :GOTO5860
IFAS="W"THENT$=",P" :POKE557,1 :A$="WORDPRO" : GOTO5860
GOT05810

PRIY"[DN]FILE TYPE: "AS"[DN]"

GET#5,AS$: IFST=0THEN5870

RETURN

REM SEND AN SEQ FILE TO BULLETIN BOARD

PRINT" [DN]NAME OF FILE TO SEND?":PRINT">";:GOSUB8000:S$=BS$
IFS$=""THENPRINT#6,"A"; :GOTO70
GOSUB5500 : IFFLTHENSS$="":GOT06015
CLOSE2:0PEN2,8,2,S$+T$:GOSUB9000: IFESTHENPRINTESS : CLOSE2 :GOT06010
FORX=1TO10:PRINT#6,TYS$; : NEXTX: PRINT

GET#5,AS$: IFST=20RA$<> "U"THEN6035

SYSML+9 :CK=ST

GET#5,AS: IFST=0THEN6050

FORX=1TO200 :NEXT:REM DELAY LOOP
FORT=0TO255: PRINT#6,CHRS (PEEK (ML-256+T) ) ; : NEXTT
PRINT#6,"222222222222222";

GET#5,AS: IFST=2THEN6060

IFA$="[DN] "THENPRINT": " ; : GOTO6050

IFAS<>" [CR]"THEN6060

IFCK=0THENPRINT"-"; :GOT06040

GET#5,AS$: IFST=0THEN6100

CLOSE2:GOTO070

SYSML+21:A$=CHRS$ (PEEK(634) ) : RETURN

PRINT"[RVS ' OFF CL]";:B$=""

GETAS:IFAS=""THENB010

IFAS=CHRS$ (20) THENB0SO

IFA$=CHRS$ (13) THENPRINT" ":RETURN

B$=BS+AS:PRINT"[' CL]"A$"[RVS ' OFF CL}";:GOTO8010
IFLEN(BS)=0THENB010
B$=LEFTS(BS,LEN{B$)-1) : PRINTAS; :GOTO8010

REM GET ERROR CHANNEL

INPUT#1,E1$,E28,E3$,E4$
ESS=E1S$+","+E2S+","+E3S+","+E4S

ES=VAL(E1S$) :RETURN -



A

400

410

420

500

510

520

530

540

550

560

570

580

590

1000
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200
1208
1216
1224
1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344

REM 'TERM.IEEE'

PRG FILE GENERATOR
REM MACHINE LANGUAGE SUBROUTINES FOR TERMINAL.I1l

REM

OPEN 8,8,8,"0:TERM.IEEE,P,W"
CH=0

FOR J=1 TO 1722

READ X CH=CH+X
PRINT#8,CHRS (X) ;

NEXT

CLOSE 8

PRINT CH

REM *** CHECKSUM SHOULD EQUAL
END

DATA 0, 121

DATA 76, 221, 121, 76, 141,
DATA 125, 76, 13, 125, 76,
DATA 165, 125, 76, 219, 125,
DATA 76, 97, 126, 76, 0,
DATA 0, 48, 48, 48, 48,
DATA 52, 53, 54, 55, 56,
DATA 67, 68, 69, 70, 0,
DATA 193, 146, 18, 194, 146,
DATA 18, 196, 146, 18, 197,
DATA 146, 0, 0, 7, 0,
DATA 201, 146, 0, o, 10,
DATA 18, 204, 146, 0, 0,
DATA 146, 18, 207, 146, 18,
DATA 209, 146, 18, 210, 146,
DATA 18, 212, 146, 18, 213,
DATA 146, 18, 215, 146, 18,
DATA 217, 146, 18, 218, 146,
DATA 208, 2, 73, 128, 96,
DATA 152, 72, 138, 72, 169,
DATA 173, 253, 127, 133, 212,
DATA 133, 211, 32, 154, 123,
DATA 8, 124, 173, 76, 2,
DATA 32, 85, 124, 104, 170,
DATA 152, 72, 138, 72, 169,
DATA 162, 5, 32, 198, 255,
DATA 41, 127, 141, 76, 2,
DATA 73, 2, 32, 204, 255,
DATA 168, 173, 76, 2, 96,
DATA 24, 105, 3, 141, 28,
DATA 255, 105, 0, 141, 29,
DATA 255, 24, 105, 5, 141,
DATA 197, 255, 105, 0, 141,
DATA 204, 255, 169, 13, 32,
DATA 18, 32, 210, 255, 169,
DATA 255, 169, 146, 32, 210,
DATA 32, 210, 255, 169, 0,
DATA 141, 67, 2, 169, 0,
DATA 141, 47, 2, 169, 1,
DATA 173, 250, 127, 240, 3,
DATA 173, 35, 232, 48, 3,
DATA 32, 184, 121, 173, 34,
DATA 2, 240, 3, 76, 64,
DATA 2, 201, 97, 144, 7.

:REM OPEN PRG FILE
:REM RESET CHECKSUM

:REM OUTPUT BYTE

:REM CLOSE
:REM PRINT
193130 ***

:REM START

126,
108,
76,
0,
49,
57,
0,
18,
146,
0,
18,
13,
208,
18,
146,
216,
32,
141,
0,
173,
165,
32,
104,
0,
32,
165,
104,
173,
121,
121,
31,
32,
210,
32,
255,
141,
141,
141,
206,
76,
232,
122,
201,

76,
125,
7.
76,
50,
65,
0,
195,
18,
20,
203,
18,
146,
211,
18,
146,
114,
76,
133,
252,
211,
54,
168,
133,
228,
150,
170,
193,
173,
173,
121,
121,
255,
32,
169,
68,
250,
44,
250,
228,
173,
173,
123,

PRG FILE
CHECKSUM

ADDRESS
13
76 -

126

0
51
66
18

146

198
18

146

206
18

146

214
18

123

2

150
127
32

124
96

150

255
141
104
255

194
196
173
32
169
210
157

2

127

2

127
122
73
76
176

1352
1360
1368
1376
1384
1392
1400
1408
1416
1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
16 40
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

3,
27,
66,
121,
104,
201,

13,

127,
10,
32,
76,

104,

173,
169,
210,

118,
142,
141,

41,
169,
201,

176,

96,
141,
66,
126,
54,
25,
126,
32,
223,
173,
162,
104,

169,
169,
210,
157,
127,
255,
174,

233,
46,

122,
240,

48,
141,
121,

201,
201,
127,

8l,
212,

91,
40,
201,
76,
32,
64,
160,
32,
60,
165,
141,
173,
65,
44,
35,
64,
144,
255,
206,
64,
208,

32,
66,

189,
121,
32,
173,
210,
122,
41,
17,
141,
208,
34,
18,
255,
32,
173,
240,
46,
114,
64,

169,
201,

122,
47,
201,
56,
20,
131,
32,
124,
169,
41,
16,
96,

126,

72,
232,
240,
206,
141,
173,

64,

64,
165,

64,
232,
232,
245,
141,
123,
232,
224,

133,

170,

121, 201
24, 109
189, 52
121, 32
41, 127
127, 169
2, 208
32, 85
72, 201
208, 241
210, 255
2, 32
169, 20
210, 255
210, 255
146, 32
255, 169
127, 208
162, 4
240, 24
208, 8
76, 2
76, 2
141, 46
208, 13
1, 141
145, 208
76, 48
144, 7
96, 201
4, 169
2, 169
121, 76
85, 124
141, 44
201, 65
169, 0
1, 208
246, 201
169, 64
64, 232
60, 141
169, 52
169, 0
232, 104
232, 16
169, 60
41, 65
73, 255
80, 251
255, 141
77, 232
60, 141
232, 96
64, 232
169, 1
128, 48



%

1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888
1896
1904
1912
1920
1928
1936
1944
1952
1960
1968
1976
1984
1992
2000
2008
2016
2024
2032
2040
2048
2056
2064
2072
2080
2088
2096
2104
2112
2120
2128
2136
2144
2152
2160
2168
2176
2184
2192
2200
2208
2216
2224
2232
2240
2248
2256
2264

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

169,
41,
33,

123,
206,
169,
123,
173,
169,
112,

2,
253,
232,
198,
104,
123,

95,
208,

64,
255,
174,
232,
232,
173,
141,
169,
211,
154,
124,
218,
246,

224,
150,
247,

32,
240,
201,

24,
105,
153,
160,
133,
123,
124,

120,

74,
153,
173,

73,
197,
120,
121,
238,
173,

254,
255,
98,

201,

13,
141,
124,
124,
238,
240,

124, 173,
232, 169,

124, 76,
169, 63,

169, 64,

201, 58,
120, 160,
200, 192,
8, 133,
0, 133,

8,

2, 174,
32, 2,
2, 41,
15, 32,
165, 150,
41, 2,
5, 200,
0, 169,
120, 24,
141, 254,
200, 192,
133, 150,
255, 120,
255, 120,
169, 8,
32, 154,
160, 0,
26, 174,
2, 200,
32, 222,
254, 208,
169, 0,
173, 72,
184, 121,

2272
2280
2288
2296
2304
2312
2320
2328
2336
2344
2352
2360
2368
2376
2384
2392
2400
2408
2416
2424
2432
2440
2448
2456
2464
2472
2480
2488
2496
2504
2512
2520
2528
2536
2544
2552
2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680
2688
2696
2704
2712
2720

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

160,

233,
124,

42,
208,

141,
74,

72,
41,

210,
169,

141,
152,
144,
173,
128,
160,

42,
152,
168,

169,

240,
126,
74,

41,
63,
13,
255,
146,
210,
70,
72,

40,
173,

13,
173,

70,

162
1
208
42

169
177

198
165

150

208

201

127
196
104
105

255
127
255

57
106
247
160

173

0
104
170



v

8 REM TERMINAL.R11 FOR RS232 MODEMS 5040 GOSUBS800:S$="@"+SS$+TS+",W"

10 IFPEEK(57345)<>72THEN1FPEEK(15763)<>32THBNL0AD“RSA“,8 5050 CLOSEZ:0PEN2,8,2,S$:GOSUB9000:IFESTHENPRINTES$:CLOSE2:GOTOSOlO
12 IFPEEK[S7345)=72THENIFPEEK(15763)(>32THBNLOAD“RSB“,8 5060 SE$=“TTTTTTTTTT“:SYSlS763:GOT05070

15 IFPEBK(30976)<>76THENLOAD"TERM.R8232“,8 5065 GOSUBR7000:IFST=0THENS065

20 POKE53,50:CLR:RES=" ":SES$=" ".MO$=134:R$=0:C$="0123456789ABCDEF" 5070 SYSML+18:IFSTTHENS5140

22 RP=5:RS=0:WP=5:WS=0:OPENS,RP,RS:OPENG,WP,WS 5080 GOSUB7000:IFST=0THENS080

23 POKE32767,RP:POKE32766,RS+96:POKEBZ765,WP:POKE32764,HS+96 5090 Sl=PEEK(HL—2):S2=PEEK(ML—1):SYSML+12

25 ML=30976:SYS15641:POKE59468,14:POKE32761,0 5120 IFS1<>PEEK(ML-2)ORS2<>PEEK(ML-1)THENS5150

30 OPENI,B,IS:POKESSG,O:POKESSZ,O:POKESS3,1 5130 SYSML+15:SB$=“[15CR]“:SY515763:PRINT“—“;:GOT05070
40 DNS$="[DN DN]":GOTO80 “[CLR]" = clear screen 5140 CLOSE2 : SES="SSSSSSSSSS™: SYS15763 : PRINT:GOTO70

70 SES="A"+"":SYSML+0:CLOSE1l:POKE32761,0 “[HOME]" = cursor home 5150 SES:"[lspN]":5y515753:pR1NT“;";;GOT05070

80 PRINT"ICLR]"XS:PRINT"[DN]FUNCTION:[DN]" “fupl"” = cursor up 5500 PRINT"[DN]TYPE OF FILE:"

120 PRINT"1 - TERMINAL MODE" "(pM]" = cursor down 5510 PRINT"[DN] (P)ROGRAM, (W)ORDPRO, OR (S)EQ?" : PRINT">";
130 PRINT"2 - RECEIVE A PROGRAM" "(cL]"” = cursor left 5520 GETBS$:IFBS=""THEN5520

140 PRINT"3 - TRANSMIT A PROGRAM" "[CR}" = cursor right 5530 TY$=B$:FL=0

145 PRINT"4 - OPEN DISK FILE" “[RVS]" = reverse mode on 5540 IFB$="p"THBNTs=",P":POKE557,O:PRINT“PROGRAM“:RETURN
146 PRINT"S - PRINT DISK FILE" "[OFF]" = reverse mode off 5550 IFBS="S“THENT$=',S":POKESS?,O:PRINT“SEQ":RETURN

147 PRINT"6 - CHANGE OPERATING MODES® “({ * ]* = 1 space 5560 IFBS="W"THENTS=",P" : POKE557 ,1 : PRINT"WORDPRO" : RETURN
160 GETAS:IFAS=""THEN160 “[15CR]" = 15 cursor rights 5570 IFB$=CHRS(13)THENFL=1:RETURN

170 ONVAL(AS)GOTO70,5000,6000,1000,2000,3000 ' 5580 GOTO05520

180 GOTO1l60 58C0 SE$=“UUUUUUUUUU“:SY515763

1000 CLOSEll:PRINT"[DN]NAME OF DISK FILE":PRINT"DEFAULT IS DRIVE 02 5810 GOSUB7000:IFST=2THEN5810

1010 PRINT“>“::GOSUBSOOO:IFB$="”THEN80 5820 IFA$=‘P"THBNT$=',P“:POKE557,0:A$=“PROGRAM“:GOT05860
1020 IPMID$(B$,2,1)<>":"THENB$=“1:"+B$ 5830 1FA$="5"THENT$=",S':POKE557,0:A$="SEO“:GOT05860
1030 OPENll,8,11,“@"+B$+",S,W“:GOSUB9000:IFBSTHENPRINTES$:GOT01000 5840 IFA$='W'THENT$=',P':POKESS?,1:A$='WORDPRO“:GOT05860
1040 POKE32761,1:GOTO80 5850 GOTO05810

2000 PRINT"{DN]NAME OF FILE?“:PRINT">"::GOSUBBOOO:IFB$='“THEN80 5860 PRINT"[DN]JFILE TYPE: "AS"[DN]"

2010 CLOSEll:0PEN11.8,11,BS:GOSUBBOOO:IFESTHENPRINTESS:GOTOZOOO 5870 GOSUB7000:IFST=0THENS5870

2020 PRINT"(DN]JASCII OR CBM TYPE OUTPUT?":PRINT">"; :POKES55,0 5880 RETURN

2030 GETAS:IFA$=""THEN2030 6000 REM SEND AN SEQ FILE TO BULLETIN BOARD

2040 IFA$=CHRS$(13)THENBO 6010 PRINT" [DN]NAME OF FILE TO SEND?“:PRINT">";:GOSUBBOOO:S$=B$
2050 IFAS="A"THENPOKES555,0:GOT02070 6015 IFSS$=""THENSE$="A":S5YS15763:GOTO70

2060 IFAS<>"C"THEN2030 6017 GOSUBS500:IFFLTHENS$="":GOT06015

2070 PRINTCHRS(ASC(AS)ORIZB)“[DN]“:SYSML+3:CL05511:GOTOBO 6020 CLOSE2:OPENZ,B,Z,S$+T$:GOSUB9000:IFESTHBNPRINTESS:CLOSEZ:GOTO6010
3000 PRINT"[CLR]JOPERATING MODES" 6030 FORX=1T010:SES=TY$:SYSIS763:NEXTX:PRINT

3010 PRINT"=-=--me==—=—e==— (DN]" 6035 GOSUB?OOO:IFST:ZORA$<>"U"THEN603S

3020 PRINT"1) AUTO LINE FEED: [DN]" 6040 SYSML+9:CK=ST

3030 PRINT" OFF " : PRINT" ON[DN] " 6050 GOSUB7000:IFST=0THEN6050

3040 PRINT"2) PARITY: [DN]" 6055 FORX=1T0200:NEXT:REM DELAY LOOP

3050 PRINT" MARK" : PRINT" EVEN" : PRINT" ODD([DN]" 6057 FORT=0TO255:SES=CHR$(PEEK(ML-256+T)):SYSlS763;NEXTT
3060 PRINT"3) EXIT 6058 SE$='ZZZZZZZZZZZZZZZ':SYSlS763

3070 GOSUB3500 6060 GOSUB7000:IFST=2THEN6060

3090 GETAS$:IFAS=""THEN3090 6070 IFAS:'[DN]“THENPRINT':"::GOTOGOSO

3100 ONVAL(AS$)G0T03200,3300,80 6080 IFA$<>"[CR]"THEN6060

3110 GOT03090 6090 IFCK=0THENPRINT"-"; : GOT06040

3200 GOSUB3510:A=PEEK(553) :A=A+1:IFA=2THENA=0 6100 GOSUB7000:IFST=0THEN6100

3210 POKES553,A:GOT03070 6110 CLOSE2:GOTO70

3300 GOSUB3510:A=PEEK(552):A=A+1:IFA=3THENA=0 7000 SYSML+21:A$=CHR$(PEEK(634)):RETURN

3310 POKES552,A:GOT03070 . 8000 PRINT"[RVS ' OFF CL]";:BS$=""

3500 AS="[RVS ' OFF]":GOT03520 8010 GETAS:IFAS=""THENS010

3510 AS$="[']" 8020 IFAS=CHRS(20)THEN8050

3520 PRINT"[HOME DN DN DN DN DN v ']';LEFTS(DNS,PEEK(553));A$ 8030 IFA$=CHRS(13) THENPRINT" " : RETURN

3530 PRINT"[HOME 10DN ' °* ']';LEFTS(DNS,PEEK(SSZ));AS:RETURN 8040 B$=BS+AS:PRINT"(' CL]"AS"(RVS * OFF CL]"; :GOTO8010
5000 REM RECEIVE A PROGRAM 8050 IFLEN(BS$)=0THENB8010

5010 PRINT"[DN]NAME OF FILE?" 8060 B$=LEFT$(B$:LEN(B$)—1):PRINTAS;:GOTOBOlO

5020 PRINT"DEFAULT DRIVE IS #0":PRINT">"; :GOSUB8000:S$=B$ 9000 REM GET ERROR CHANNEL

5025 IFSS$=""THENSE$="A":SYS15763:GOTO70 9010 INPUT#1,E1$,E2S,E3$,E4$

5030 IFMIDS (S$,2,1)<>":"THENSS$="0:"+S$ 9020 EsS=Bl$+',“+E2$+',“+83$+",“+E4$

9030 ES=VAL(E1S):RETURN



LY

400
410
420
500
510
520
530
540
550
560
570
580
590
1000
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200
1208
1216
1224
1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344

REM 'TERM.RS232' PRG FILE GENERATOR

REM MACHINE LANGUAGE SUBROUTINES FOR TERMINAL.R11l
REM

OPEN 8,8,8,"0:TERM.RS232,P,W" :REM OPEN PRG FILE
CH=0 :REM RESET CHECKSUM
FOR J=1 TO 1698

READ X : CH=CH+X

PRINT#8,CHRS (X) ; :REM OUTPUT BYTE

NEXT
CLOSE 8 :REM CLOSE PRG FILE
PRINT Cn :REM PRINT CHECKSUM

REM *** CHECKSUM SHOULD EQUAL 190616 ***

END

DATA 0, 121 :REM START ADDRESS
DATA 76, 141, 121, 76, 120, 126, 76, 178
DATA 124, 76, 178, 124, 76, 17, 125, 76
DATA 74, 125, 76, 128, 125, 76, 172, 125
DATA 76, 6, 126, 76, 0, o, 76, 0
DATA 0o, 48, 48, 48, 48, 49, 50, 51
DATA 52, 53, 54, 55, 56, 57, 65, 66
DATA 67, 68, 69, 70, 0, 0, 0, 18
DATA 193, 146, 18, 194, 146, 18, 195, 146
DATA 18, 196, 146, 18, 197, 146, 18, 198
DATA 146, 0, 0, 7, 0, 0, 20, 18
DATA 201, 146, 0, 0o, 10, 18, 203, 146
DATA 18, 204, 146, 0, o, 13, 18, 206
DATA 146, 18, 207, 146, 18, 208, 146, 18
DATA 209, 146, 18, 210, 146, 18, 211, 146
DATA 18, 212, 146, 18, 213, 146, 18, 214
DATA 146, 18, 215, 146, 18, 216, 146, 18
DATA 217, 146, 18, 218, 146, 32, 23, 123
DATA 208, 2, 73, 128, 96, 173, 193, 255
DATA 24, 105, 3, 141, 28, 121, 173, 194
DATA 255, 105, 0, 141, 29, 121, 173, 196
DATA 255, 24, 105, 5, 141, 31, 121, 173
DATA 197, 255, 105, 0, 141, 32, 121, 32
DATA 204, 255, 169, 13, 32, 210, 255, 169
DATA 18, 32, 210, 255, 169, 32, 32, 210
DATA 255, 169, 146, 32, 210, 255, 169, 157
DATA 32, 210, 255, 169, 0, 141, 68, 2
DATA 141, 67, 2, 169, 0, 141, 250, 127
DATA 141, 47, 2, 169, 1, 141, 44, 2
DATA 173, 250, 127, 240, 3, 206, 250, 127
DATA 32, 55, 126, 173, 73, 2, 240, 3
DATA 76, 137, 122, 173, 176, 2, 201, '97
DATA 144, 7, 201, 123, 176, 3, 24, 105
DATA 96, 32, 133, 121, 201, 27, 176, 26
DATA 141, 66, 2, 24, 109, 66, 2, 109
DATA 66, 2, 170, 189, 52, 121, 32, 83
DATA 126, 189, 53, 121, 32, 83, 126, 189
DATA 54, 121, 72, 41, 127, 201, 13, 208
DATA 25, 32, 80, 127, 169, 13, 32, 83
DATA 126, 173, 41, 2, 208, 5, 169, 145
DATA 32, 210, 255, 32, 64, 127, 104, 76
DATA 132, 122, 104, 72, 201, 110, 208, 16
DATA 173, 41, 2, 208, 241, 32, 80, 127
DATA 169, 17, 32, 210, 255, 76, 59, 122

1352
1360
1368
1376
1384
1392
1400
1408
1416
1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
16 40
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

104,

34,
169,
169,
210,
157,
127,

174,
233,

115,

133,

177,

141,
44,

208,
201,

232,
141,

232,
232,
232,
173,

52,
232,
28,
232,
165,
4,
126,
169,
41,
33,
4,
123,
115,
169,
123,
173,
169,
112,
64,

201
255

32
169
250
228
127

56
141
208
224
127

76

133
176



3V

1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888
1896
1904
1912
1920
1928
1936
1944
1952
1960
1968
1976
1984
1992
2000
2008
2016
2024
2032
2040
2048
2056
2064
2072
2080
2088
2096
2104
2112
2120
2128
2136
2144
2152
2160
2168
2176
2184
2192
2200
2208
2216
2224
2232
2240
2248
2256

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

112,

253, 141,
5, 169,
232, 173,
232, 44,
141, 33,
251, 164,
165, 211,
209, 240,
219, 123,
250, 123,
123, 165,
173, 123,
150, 96,
141, 75,
124, 10,
75, 2,
48, 3,
48, 201,
96, 120,
120, 200,
169, 8,
169, 0,
211, 32,
76, 2,
15, 32,
76, 2,
41, 15,
120, 165,
2, 41,
208, S,
160, 0,
255, 120,
120, 141,
120, 200,
2, 133,
238, 255,
173, 255,
96, 169,
211, 32,
123, 160,
240, 26,
75, 2,
2, 32,
192, 254,
0, 169,
2, 173,
32, 55,
237, 173,
120, 200,
133, 150,
240, 2,
2, 177,
160, 2,
2, 208,
133, 2,
177, 42,
141, 122,

162,

177,
236,
200,
133,

2,

232,
32,
72,

232,

104,

240,

240,

160,

196,

211,
41,

250,

173,

233,

212,

208,
120,

250,

38,
201,
127,
219,
173,
123,

32,

10,
133,
133,

165,

232
173
141
169
211

63
123
218
246

224
150
156

32
240
201

24
105
153
160
133
123
124

23
120

74
153
173

73
197
120
121
238
173

16
254
255

32
201

13
141
123
123
238
240

153
169
44

86
206
150

177

2264
2272
2280
2288
2296
2304
2312
2320
2328
2336
2344
2352
2360
2368
2376
2384
2392
2400
2408
2416
2424
2432
2440
2448
2456
2464
2472
2480
2488
2496
2504
2512
2520
2528
2536
2544
2552
2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680
2688
2696

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

133,
123,

160,

42,
144,
42,
133,
42,
72,

200,
76,
170,
32,
141,
104,
32,

107,

32,
123,

42,
133,
173,
124,
208,
240,

122,
32,
96,
32,

160,

174,
32,

233,

123,

208,
65,
120,
74,
13,
72,

64,
210,
169,

32,
141,
152,
144,
173,
128,
160,

42,

¢ 152,

168,

165,
2,
200,
150,
96,
1692,
145,
177,

104,
172,

240,
126,

105
200
145

150
177

32
152
122
150
173

76

63

76

96
133
123
133
150
240
208
172

63
42

204
210
173
240
255

121

164
141

96
127
127
157

40
173

2

41
127
240
141

96



400
410
420
500
510
520
530
540
550
560
570
580
590
1000
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200
1208
1216
1224

REM 'RS3' PRG FILE GEMERATOR
REM TERMINAL.R11 USER PORT RS232 FOR BASIC 2.0

REM

OPEN 8,8,8,"0:RS3,P,W"

CH=0
FOR J=1 TO 882
READ X : CH=CH+X
PRINT#8,CHRS$(X);
NEXT

CLOSE 8

PRINT CH

REM *** CHECKSUM
END

DATA 144, 60
DATA 255, O,
DATA 7, 157,
DATA 15, 16,
DATA 23, 24,
DATA 31, 32,
DATA 39, 40,
DATA 47, 48,
DATA 55, 56,
DATA 63, 64,
DATA 199, 200,
DATA 207, 208,
DATA 215, 216,
DATA 95, 64,
DATA 71, 72,
DATA 79, 80,
DATA 87, 88,
DATA 20, 209,
DATA 36, 120,
DATA 62, 141,
DATA 60, 141,
DATA 232, 141,
DATA 60, 169,
DATA 62, 169,
DATA 232, 141,
DATA 31, 141,
DATA 3, 136,
DATA 232, 141,
DATA 143, 60,

SHOULD EQUAL

19,
29,
10,
25,
33,
41,
49,
57,
193,
201,
209,
217,
65,
73,
81,
89,
25,
169,
145,
79,
78,
130,
1,
76,
75,
168,
72,
88,

2,
17,
18,
26,
34,
42,
50,
58,

194,
202,
210,
218,
66,
74,
82,
90,
35,
159,
0,
232,
232,
141,
141,
232,
232,
185,
232,
96,

147,
11,
1,
27,
35,
43,
51,
59,
195,
203,
211,
91,
67,
75,
83,
179,
120,
141,
169,
169,
169,
78,
67,
173,
173,
17,
185,
120,

:REM OPEN PRG FILE

:REM RESET CHECKSUM

:REM CLOSE PRG FILE
:REM PRINT CHECKSUM

98006 ***
:REM START
18, 146,
145, 13,
127, 21,
28, 9,
36, 37,
44, 45,
52, 53,
60, 61,
196, 197,
204, 205,
212, 213,
92, 93,
68, 69,
76, 17,
84, 85,
221, 171,
2, 6,
144, O,
0, 141,
127, 141,
255, 141,
232, 32,
232, 13,
75, 232,
134, 60,
61, 141,
21, 61,
169, 46,

:REM OUTPUT BYTE

ADDRESS
6
14

1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344
1352
1360
1368
1376
1384
1392
1400
1408
1416
1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
1536
1544
1552
1560

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

177,

232,
109,

134,
246,
134,

208,
172,
198,

230,
232,

141,

141,
141,

177,
238,

143,

173,
177,
141,

60,
39,
60,
173,
1,

169
169
19
38

140
138

1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

208,

169,

216,

141,

169,

172,

127,

240,
158,
32,

38,
168,

152,
9'
169,
34,

238,
169,

136,
205,

153,
141,
160,

205,
201,

169,
169,

46,
141,

138,
206,
141,
141,
249,

38,

232,
60,

232,
139,

173,
145,
240,

60,
135,
138,
134,

111,
141,
141,

141,
64,

160
223
35
40
208
34
131
208
145
24
230

208
41
144
73
60
63
128
141
173
14]1
141

60
16
134
60

16
60
141
60
201

77
76
123

170



400
410
420
500
510
520
530
540
550
560
570
580
590
1000
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200
1208
1216
1224

REM 'RS4' PRG FILE GENERATOR
REM TERMINAL.R11 USER PORT RS232 FOR BASIC 4.0

REM

OPEN 8,8,8,"0:RS4,P,W"
CH=0

FOR J=1 TO 882

READ X : CH=CH+X
PRINT#8,CHRS(X);
NEXT

CLOSE 8

PRINT CH

REM *** CHECKSUM
END

DATA 144, 60

DATA 255, 0,
DATA 7, 157,
DATA 15, 16,
DATA 23, 24,
DATA 31, 32,
DATA 39, 40,
DATA 47, 48,
DATA 55, 56,
DATA 63, 64,
DATA 199, 200,
DATA 207, 208,
DATA 215, 216,
DATA 95, 64,
DATA 71, 72,
DATA 79, 80,
DATA 87, 88,
DATA 20, 209,
DATA 36, 120,
DATA 62, 141,
DATA 60, 141,
DATA 232, 141,
DATA 60, 169,
DATA 62, 169,
DATA 232, 141,
DATA 31, 141,
DATA 3, 136,
DATA 232, 141,
DATA 143, 60,

SHOULD EQUAL

19,
29,
10,
25,
33,
41,
49,
57,
193,
201,
209,
217,
65,
73,
81,
89,

2,
17,
18,
26,
34,
42,
50,
58,

194,
202,
210,
218,
66,
74,
82,
90,
35,
159,
0,
232,
232,
141,
141,
232,
232,
185,
232,
96,

147,
11,
1,
27,
35,
43,
51,
59,
195,
203,
211,
91,
67,
75,
83,
179,
120,
141,
169,
169,
169,
78,
67,
173,
173,
17,
185,
120,

:REM OPEN PRG FILE
:REM RESET CHECKSUM

:REM OUTPUT BYTE

:REM CLOSE
:REM PRINT
100066 ***
:REM START
18, 146,
145, 13,
127, 21,
28, 9,
36, 37,
44, 45,
52, 53,
60, 61,
196, 197,
204, 205,
212, 213,
92, 93,
68, 69,
76, 17,
84, 85,
221, 171,
2, 6,
144, 0,
, 141,
127, 141,
255, 141,
232, 32,
232, 13,
75, 232,
134, 60,
61, 141,
21, 61,
169, 85,

PRG FILE
CHECKSUM

ADDRESS

6
14
22
30
38
46
54

1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344
1352
1360
1368
1376
1384
1392
1400
1408
1416
1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
1536
1544
1552
1560

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

24,

141,
141,
169,

88,
142,
240,

169,
77,
75,
32,
96,
60,
15,

179,
96,

174,

205,
16,

134,

60,
74,
173,
60,
232,

173,
172,
137,
60,
64,
69,
76,
169,
141,
139,
134,
246,
134,
96,

200,
42,
42,
73,

208,

172,

198,

228,
232,
232,
141,

32,
173,
168,

138,

141,
141,
169,

79,
131,
142,
177,
238,

32,

60,

60,
142,
240,
136,

13,
60,
69,

173,
232,
169,
208,
173,

145,
78,
61'

128,
62,

184,
142,

232,
141,
141,
169,
205,
141,

60,
134,
127,

60,
160,
169,
208,

60,
251,
169,
137,

60,

64,
141,

32,

60,

76,

60,
138,
232,
160,
141,

58,
145,
169,
139,

42,
184,

96,

96,
128,
141,
196,
200,

169
169

78

140
138

76

60
185
152
169

248
141
120
192
60
16
208
77
74

249
141

96

139
200
42
58
60
141
0

160
173
173

19

192

1568

1576.

1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

135,
234,
234,

177,
247,

144,
234,
234,
162,
34,
238,
208,
133,
136,
234,
72,
169,
76,
138,
240,
48,
173,
32,
144,
128,
60,
60,
232,
232,
63,
141,
4,
41,
173,
41,
224,
13,
60,
8,
16,
140,
169,
169,
173,
104,

72,
234,
234,

201,
234,
234,
142,

34,

169,
169,
251,
169,
72,
13,
63,
32,
76,
173,
232,
77,
16,
78,
160,
24,
76,

139,
173,

41,
240,

60,
170,
208,

134,
16,
168,

13,
141,
128,
104,

144,
234,
128,

34,
136,
133,
160,
145,

72,

76,
232,

41,

62,
60,
110,
76,
173,
169,
78,
143,

77,
238,

170,
189,

64,
134,
173,

173,
158,
153,

34,
232,
232,
127,
104,

234
234
35
80
208
35
169
145
210

228
19
208

144
73
60

128
141
173
141
141

134

141



The User Port to RS-232 Cable Henry Troup, Toronto

The RS232 version of the BBS TERMINAL programs works the
Parallel User Port as an RS232 Port. However, a special
cable is necessary to interface RS232 modems.

Components List:

- User Port connector

- RS-232 (Type D) connector
- 620 ohm resistor

680 ohm resistor

- 1 K ohm resistor

- Diode

et ot b et
[

The User port connections are all to the lower level:
pins A (ground), B (CAl), C (PAO), and L (PA7) are used. On
the RS-232 end, pins 7 (Signal Ground), 2 (Transmitted Data),
and 3 (Received Data) are used.

- From pin A, to pin 7.

- Between pins A and B, a 680 ohm resistor. In parallel, a
diode, with the anode to pin A.

- Pin B to Pin L.

- From pin C, through a 1 K ohm resistor, to pin 2.

- From pin L, through a 620 ohm resistor, to pin 3.

That's all for the wiring.

Explanation of Theory

This circuit will drive only TTL-level RS-232 hardware.

The diode protects the parallel port from negative
swings of the received data 1line. The 620 and 680 ohm
resistors form a voltage divider, sufficient to protect the
CAl pin. The 1 K resistor provides a locad, and protection
against mis-connected RS-232 cables.

Received data cauSes a transition on PA7, and an
interrupt on CAl. Transmitted data is sent through PAO.

For any further details, phone Henry Troup at 416
624-3419,



BASIC~-AID, F. Arthur Cochrane
A _Super Edjitor For The PET Beech Island, S.C.

For those who may not know what Basic-Aid is, I will
start with a little background. Basic-Aid is a BASIC program
development tool for the PET and was orginally written by
Bill Seiler and is very much like the Toolkit. It has the
following commands:

Aid - A Help function when a BASIC program error occurs.

Auto - Auto line numbers for program entry.

Break - Break to the TIM machine language monitor in the
PET.

Change - Search for an old string and replace it with a new
string in a BASIC program.
Delete ~ Delete a range of lines from a BASIC program.

Find - Find a string in a BASIC program and print the lines
where it occurs.

Kill - Disable Basic-Aid from use,

Number - Renumber a BASIC program correcting all GOTOs and
GOSUBs. :

Repeat - Enable repeat Kkeys.

Trace - Enable the trace function, which prints the line

number and token in a window when a program is run.

The program was a 2K program which loaded into the top
4K of a 32K PET and worked only on Upgrade BASIC (BASIC 2).
The next version of Basic-Aid that I know about was a version
from Commodore Canada. This version was upgraded for BASIC
4.0 and added the following commands:

Flist - List a BASIC program directly from the disk to the
screen,

Hex - Convert HEX to decimal and decimal to HEX.

Lower - Put the PET into lower case,

Merge - Merge a program from the disk with the one in
memory.

Read - Read a sequential file directly from the disk to the
screen,

Start - Print the loading address of a program on the disk.

Upper - Put the PET into upper case. ,

The next version of Basic-Aid that I came across had
these commands and functions added:

Dump - Dump the variables defined in the program.

Crt - Dump the screen to the printer.

Pack - Remove the extra spaces and REM's from a BASIC
program,

Dos - Also the DOS Support commands (@, >, /, T) were
included.

The ability to print the screen with [SHIFT-ESC] and to
escape from the quote/insert mode with were also added.

My additions to Basic-Aid have been the following
commands and functions;

Size - Give the size of a program in memory or on the disk.

Spool =~ Send a file from the disk directly to the printer.
Un-new - Restore a program after a NEW,

- 52 -



The ability to scroll the BASIC program with the cursor
control keys was added. The scroll feature was adopted from
code for a version of the CBM assembler editor by Bill
Seiler.

Many bugs were also fixed. I would like to thank Jim
Butterfield for the AID4 program which allowed me to fix a
renumber bug in Basic-Aid. The DOS commands also had bugs
which were fixed. Also when upgraded to BASIC 4.0 the trace
would not function because a compare was now incorrect. The
screen dump was modified to allow printing to an ASCII
printer.

Basic-Aid is a very powerful BASIC program development
aid, but how does it compare to others available for
PET/CBMs?

Basic~-Aid has more features than the Toolkit and is more
useful than a Toolkit alone.

The Disk-0-Pro has some useful features. The most
important is the addition of BASIC 4.0 commands to Upgrade
BASIC. Also the Print Using command for formatted output is
useful. The Disk-O-Pro will function with a Toolkit if one
is present. A disadvantage is that the Disk-O-Pro must be in
place for these commands to work in a program and it slows
BASIC down., See Compute issue #8 page 112 for a complete
review.

The Command-O adds the Print Using command, the Toolkit
commands, and others to BASIC 4.0. The Renumber command is
improved to allow renumbering in a line range instead of the
whole program and the Trace function has been improved to
show the whole 1line that is being traced. But again the
Command-O must be enabled for the Print Using command and
others to work in a program.

Power has some different commands also, and, like the
others, comes on a ROM so no user RAM is taken away. It has
the improved Renumber command and a very powerful Trace
function. It has a Search and Replace command with the
option for don't care characters in the search string. Power
also has instant keywords and instant subroutines options
which can be useful. The XEC command is very powerful and
has many options, such as merging a program from disk. Power
has the option for other commands to be added to it. For a
full review of Power see the Overview in Compute issue #18
page 136.

So if you have a PET which super-editor is for you? The
answer will depend on the BASIC your PET has and the features
you want a super-editor to have. Upgrade BASIC users can
choose from the Toolkit with a Disk-O-Pro, Power, or
Basic-Aid. Basic 4.0 users <can choose the Toolkit,
Command-0O, Power, or Basic-Aid. Each super-editor has some
features not included in the others. The user should get all
the information on each and decide for himself. In this
evaluation Basic-Aid has a strong selling point in that it is
in the public domain and 1is FREE, There are other
super—-editors not mentioned here but these are the ones most
seen in ads and the ones the author is familiar with.

- 53 -



Note that Original BASIC users are limited to a Toolkit
only. Because of vast zero page changes between BASIC 1.0
and BASIC 2.0, and the fact that Original BASIC will not work
with the Commodore disk, Basic-Aid as it stands now will not
assemble for Original BASIC.

Because the VIC-20 has BASIC 2.0, it will be possible to
modify Basic-Aid for VIC use, however you'll need more memory
than an "off-the~shelf" VIC. The modification will involve
checking the subroutine calls and modifing the scroll for the
screen size, but I believe a VIC Programmers Aid cartridge is
already available. If anyone is successful in the
modification of this public domain version, they should be
sure to publish the results for others.

But where do you get Basic-Aid? A PET user group is the
best source. Two user groups which can provide Basic-Aid are
ATUG and TPUG (addresses below). They should also have
source code in Carl Moser's MAE assembler format and a
program that will convert this to Commodore assembler format.
Basic-Aid can be assembled and burned into an EPROM and
plugged into one of the empty sockets in the PET so it is
available with a SYS and does not have to be loaded from disk
each time the PET is reset or powered up.

I would also like to thank Jim Strasma of ATUG for his
help and cominents on the work I did on Basic-Aid.

I hope that you will pass Basic-Aid on to your friends,
This program is in the public domain and should be passed
around freely. If anyone finds bugs or has comments please
contact me about them.

F. Arthur Cochrane Home 803 827 1902
1402 Sand Bar Ferry Rd Bus. 803 725 3652
Beech Island, S. C.
USA 29841
ATUG (ASM/TED Users Group) TPUG (Toronto PET Users Group)
c/0 Brent Anderson c/o Chris Bennett
200 S, Century 381 Lawrence Ave, West
Rantoul, Ill1 61866 Toronto, Ontario
USA Canada M5M 1B9
217-893-4577 416-782-9252

or' N

The two BASIC loaders that follow are Basic-Aid for the 8032
and for the fat 4032. Both use Commodore format for printer
output. Versions for BASIC 2.0, 9" BASIC 4.0 machines and
ASCII printer output are all available from either of the
above user groups.

Both programs were generated using the DATA Line Generator
from Transactor 1, Vol. 3, pg. 12, The SYS call in line 1000
will engage Basic-Aid. For a direct load version, use the
monitor Save:

.S "BaSiC-Aid.bin",OX,7000 '7FFF
where x=8 for disk, 1 or 2 for cassette. After loadihg this,

use the same SYS to engage, but follow with a NEW else FRE(O0)
will misbehave.



After entering one of these loaders you'll probably see

DATA statements in your sleep!

them out while you type.
considerably.

easier,

10
20
30
40
50
60
70
80

However,
possibility of error is still high.

with over 4000 data elements,

This

add this short checksum
the loader:

FOR I=1 TO 10
IF I=10 THEN L=40

L=52 :
CH=0

FOR J=1 TO L*8

READ X
NEXT J

: CH=CH+X

You might have a friend read

will reduce entering time
the
To make life a little
program to the beginning of

¢:REM 10 PAGES OF DATA
:REM LAST PAGE SHORTER
:REM RESET CHECKSUM

¢:REM #LINES * 8 PER LINE
¢REM ACCUMULATE

PRINT "CHECKSUM FOR BLOCK";I;"=";CH

NEXT I

: END

It should produce these results:

Checl for 8032 Basic-Aid
CHECKSUM FOR BLOCK 1 = 53306
CHECKSUM FOR BLOCK 2 = 51652
CHECKSUM FOR BLOCK 3 = 48818
CHECKSUM FOR BLOCK 4 = 51821
CHECKSUM FOR BLOCK 5 = 48292
CHECKSUM FOR BLOCK 6 = 54770
CHECKSUM FOR BLOCK 7 = 55381
CHECKSUM FOR BLOCK 8 = 52888
CHECKSUM FOR BLOCK 9 = 55393
CHECKSUM FOR BLOCK 10 = 34935

Chec _for fat 4032 Basic-Aid

CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM
CHECKSUM

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

53948
51417
48814
51819
48208
54546
54546
51798
55525
0 = 34939

wuwuuanunnn

- 55 -



94

pasic-Aid Command List (As of November 27, 1981)

AUTO LINE NUMBERS Syntax: AUTO [inc]

AUTO

Auto prints the BASIC line numbers for you as you key-in a
program. Enter AUTO with an increment, then enter the first
line of the program. After hitting RETURN Basic-Aid will
provide the next line number. Turn AUTO off by entering the
command with no increment. Increment can be from 1 to 127.

BREAK TO MONITOR Syntax: BREAK

The BREAK command calls the machine language monitor in the
PET. This is a call to the monitor and not a break, so open
files on BASIC 4.0 will remain open for monitor listings.
CHANGE TEXT Syntax: CHANGE @search@replace@,{range]
The CHANGE command will search through a BASIC program for a
string and change it to a replacement. The changed lines are
displayed as they are changed. Because BASIC 1lines are
tokenized it may be necessary to enclose the strings in
quotes to change them., The whole program is searched unless
a line range is given., Line range has same format as LIST.

DUMP SCREEN Syntax: CRT

The screen is printed to a printer connected to the PET as
device number 4, There are versions of Basic-Aid for ASCII
and Commodore printers. The screen dump to a Commodore
printer will be exactly like the screen. The screen dump to
an ASCII printer will be in upper case only if the PET is in
graphics mode or lower/upper case if the PET is in text mode.
DELETE LINES Syntax: DELETE [range])

Deletes a given line range of lines from a BASIC program.
The line range has the same format as the LIST command.
DISPLAY VARIABLES Syntax: DUMP

DUMP will 1list the variables used in a BASIC program and
their values. Dump does not list arrays or variables that
have not yet been "seen™ by BASIC. The variables are listed
in the order in which they were created. The variables are
printed in such a way that they can be edited with the screen
editor so that a program can be stopped, the varibles dumped,
edited to new values, and the CONT command given -to continue
the program with the new values.

FIND TEXT Syntax: FIND @search string@,{range]
The FIND command searches a BASIC program for a string and
displays the lines where it occurs. Because BASIC lines are
tokenized it may be necessary to enclose the search string in
quotes to find it. The whole program is searched unless a
line range is given. Line range has same format as LIST.

DISK LIST Syntax: FLIST “"program filename"
This command will list a BASIC program on the disk directly
to the screen without affecting the contents of memory.
WARNING: DO NOT use the keyprint function to try and dump the
screen to the printer while this command is executing.

DISPLAY ERROR Syntax: HELP

The HELP command ('AID' in older versions) will display the
BASIC 1line that caused the BASIC program to stop and
highlight where in the line the problem occured.

CONVERT HEX-DEC Syntax: HEX $§ [hex number]
' HEX (decimal number]

The HEX command will convert HEX to decimal and decimal to
HEX. This can be very useful in figuring PEEK, POKE, and SYS
addresses. If the number input is preceded by a dollar
symbol then the number is taken to be HEX and the decimal
value for it is printed. If a decimal number is entered then
the HEX value for it is returned. The range for conversion
is 0 to 65535 or S0000 to SFFFF.

KILL BASIC AID Syntax: KILL

Basic-Aid can be disabled with the KILL command. This
restores the IRQ vector and CHRGET routine in zero-page,
Re-enable Basic-Aid with a SYS to the start of the Basic-Aid
machine code. (32K RAM version ~- SYS 7*4096)

LOWER CASE MODE Syntax: LOWER
Puts the PET into lower case mode. (Same as POKE 59468,14.)

MERGE PROGRAMS Syntax: MERGE "program filename"”

Merge a BASIC program from disk with the one in memory. The
merging will be just like the program was typed in from the
keyboard so lines are merged between ones in memory if
necessary and duplicate lines in memory are replaced with the
merged lines. The program is listed as it is merged.

KILL REPEAT/SCROLL Syntax: OFF

Restores the PETs normal IRQ vector. This will cancel repeat
keys (except on FAT 40s and 8032s), scrolling, and keyprint.

PACK A PROGRAM Syntax: PACK

Removes remarks and waste spaces in a BASIC program. Note
don't branch in a BASIC program to deleted remarks, This
command is fooled easily so keep a copy of the orginal in
case the packing does not function properly.

SEQ READ Syntax: READ "seq filename"

The READ command will read a sequential file from the disk
and print it to the screen., This command can be very handy
for viewing data created by programs. WARNING: DO NOT use
the keyprint function to try and dump the screen to the
printer while this command is executing.



LS

LINE RENUMBER Syntax: RENUMBER
RENUMBER [start line#]

RENUMBER (start line#}, [inc]

Renumbers a BASIC program correcting all GOTOs and GOSUBs in
the program. The program is renumbered starting at 100 and
with an increment of 10. A starting line number can be input
other than 100 and an increment other than 10 can be input.
ENABLE REPEAT Syntax: REPEAT

SCROLL (FAT 40s & 8032s)

Enables repeat keys, scrolling, and keyprint. Repeat keys
are set automatically when Basic-Aid 1is first called and
automatically cancelled each time a program is loaded.

PROGRAM SIZE Syntax: SIZE

SIZE "program filename"

SIZE gives the size of a BASIC program in memory or any

program on disk. The size of a program in memory is found by .

substracting the end of the program location from the start

of the program location. The size of a program on disk is

found by counting the bytes in the file. The size is given

in decimal and HEX.

SEQ SPOOL Syntax: SPOOL "sequential filename"
SPOOL

Sends an SEQ file directly from the disk to the printer. The
PET can then do other things, such as editing a program or
running a program (but with no access to the IEEE bus).
Basic-Aid opens the specified file and listens the printer

‘then gets off the IEEE bus which allows the disk to talk

directly to the printer. When the printer stops, enter SPOOL
with no filename to unlisten the printer, untalk the disk,
and close the file. Use the spool command to list a 1long
program while you use the PET for something else. Create a
file with:

OPEN8,8,8,"0:TEMP,S,W":CMD8:LIST
PRINT#8:CLOSES8
FIND LOAD ADDRESS Syntax: START "program filename"
Returns the load address of a program on the disk. The load
address is found by reading the first two bytes of the file
which is the address where the program is loaded. The load
address is given in decimal and HEX. This command can be
used to find where machine language programs load.
PROGRAM TRACE Syntax: TRACE [speed]
TRACE

The TRACE command enables or disables the tracing of a BASIC
program. Tracing is enabled with the command and a number
and disabled with the command alone, The number input
controls the speed of the tracing. The number can be from 1
to 127 with 1 being the fastest and 127 the slowest. Tracing
takes place in a window in the upper right of the screen with
the 1last nine 1lines traced and the current 1line that is
executing. The line number and what is executing in the line
are listed.

PROGRAM RECOVER Syntax: UN-NEW

If after a New command is entered it is discovered that a
program has not been saved it can be recovered with this
command.

PUT THE PET INTO UPPER CASE

UPPER CASE MODE Syntax: UPPER

Puts the PET into upper case mode. (same as POKE 59468,12)

DOS SUPPORT Syntax: > (or @)
>disk command
>$0

/program name
Tprogram name

The DOS support commands are supported. The at sign and
greater than (€, >) symbols are used to read the error
channel, send commands, and display the disk directory. The
symbol alone will read the error channel and print it to the
screen. The symbol followed by a disk command will send that
command to the disk. The symbol followed by the dollor
symbol will display the directory to the screen. WARNING: DO
NOT use the keyprint function to try and dump the screen to
the printer while this command is executing. The slash (/)
will load a program from the disk. Repeat keys are not
disabled by this load. The uparrow (T) will load and execute
a program from disk.

ESCAPE QUOTE MODE

Press the STOP key on graphics keyboards to escape quotes
mode or cancel outstanding inserts (same as the ESCape key on
business keyboards). This function will only work when
repeat keys are enabled.

KEYPRINT

This function allows the screen to be printed to the printer
with the press of one key. This is the same as the CRT
command except that in can occur in a program. On graphics
keyboards use the shifted backslash and on business use the
shifted escape. This function is available only when repeat
keys are enabled.

SCROLL A PROGRAM

The cursor up/down keys can be used to scroll through a BASIC
program. The cursor must be in the first two columns for
scrolling to take place. This function is only available
when repeat keys are enabled (use REPEAT or SCROLL to
enable).

NOTE: The commands which print to the screen (Change, Dump,
Find, Flist, Merge, Read, Trace, and Directory (>$)) can be
paused, held, or stopped. Pause with the SHIFT key, stop
with the STOP key. Hold the display with the space bar on
graphics keyboards and 6 on business keyboards. To continue
use the < key on graphics keyboards and 9 on business
keyboards.



89

Fat 4032 Basic-Aid Loader
FOR J=28672 TO

1600
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200

1208 .

1216
1224
1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344
1352
1360
1368
1376
1384
1392
1400
1408
1416

DATA
DATA
DATA
DATA
DATA
DATA
DATZA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLOCK

169,
173,
176,
181,
202,

76,
120,

1

a,
204,
7,
162,
16,
35,
173,
131,
210,
120,
202,
126,
132,
40,
132,
24,
2,
54,
160,
208,
1,
169,
16,
48,
48,
129,
45,
129,
32,
24,
242,
129,
113,
52,
251,
52,
251,
113,
158,
232,
162,
207,
133,
201,
240,
174,
35,
164,
176,
211,
180,
165,

32735
141,
127,
133,
15,
248,
114,
255,
113,
255,
162,
16,

128,

READ X :

136,
174,
52,
189,
162,
230,
1,
189,
232,
23,
248,
128,
10,
15,
74,

16,

3,
205,
134,
43,
19,
119,
76,
247,
208,
189,
76,
133,
133,
133,
113,
101,
198,
134,
5
240,
157,
48,
134,
0,
191,
192,
44,
9,
200,
157,
44,
9,
174,
232,
36,
33,
240,
208,
173,
201,
32,
208,
129,
48,
135,
240,
132,
129,
32,
. 0,
32,

2,

141,
127,

53,
112,

32,
208,

81,
126,
245,
153,
166,
133,
131,
124,
198,
132,
131,

96,
200,

(CHECKSUM FOR RLCOCK 1

POKE J,X

137,
224,
32,
149,
59,
2,
113,
240,
96,
211,
120,
169,
162,
177,
124,
133,
208,
32,
185,
202,
129,
157,
232,
119,
128,
208,
160,
246,
132,
129,
160,
246,
3,
7,
208,
52,
72,
169,
232,
96,
205,
230,
189,
120,
119,
48,

3
128
233
112
112
230
234
6
208
149
76
25
0
132
208
132
226
63
0
185
208
129
165
240
157
237
157
176
48
232
157
32
202
232
252
113
32
0
205
133
76
133
1
224
134
11
90
201

76

1
144
162

53948 )

SYS 7*4096

1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800
1808
1816
1824
1832

DATA O,
DATA o,
DATA 201,
DATA 29,
DATA 228,
DATA 119,
DATA 149,
DATA 121,
DATA 141,
DATA 165,
DATA 136,
DATA 136,
DATA 32,
DATA 111,
DATA 157,
DATA 157,
DATA 180,
DATA 144,
DATA 141,
DATA 239,
DATA 119,
DATA 159,
DATA 201,
DATA 249,
DATA 201,
DATA 205,
DATA 169,

pATA 72,

DATA 72,
DATA 173,
DATA 208,
DATA 2,
DATA 169,
DATA 208,
DATA 93,
DATA 165,
DATA 177,
DATA 133,
DATA 119,
DATA 30,
DATA 101,
DATA 145,
DATA 34,
DATA 182,
DATA 2,
DATA 32,
DATA 180,
DATA 134,
DATA 3,
DATA 244,
DATA 245,
DATA 93,

BLOCK 2

16,
173,
76,
139,
227,
141,
0,
203,
133,
92,
92,
119,
170,
138,
43,
33,
165,
180,
133,
233,
32,
70,
208,
115,
190,
133,

119,

132,
253,
19,
250,
232,
165,
189,
112,
76,
246,
42,
96,
162,
189,
232,
232,
120,
127,
88,
152,
134,
240,
10,
32,
214,
240,
139,
127,
228,
240,
140,
3,
151,
52,
134,
93,
4,
120,
34,
101,
43,
208,
197,
31,
144,
76,
0,
244,
162,
112,
52,
134,

116,
120,

33,
120,
133,

0,
230,
176,

32,
232,
179,
128,
165,
134,
240,
165,

32,

(CHECKSUIY FOR RLOCK 2

92,
223,

151
217
3
127
72
237
3
169
213
168
166
181
1
92
229
176
152
119
230
32
105
43
251
0
201
32
32
166
186

51417 )



65

1840
1848
1856
1864
1872
1880
1888
1896
1904
1812
1920
1928
1936
1944
1952
1960
19268
1976
1984
1992
2000
2008
2016
2024
2032
2040

DATA 208,
DATA 119,
DATA 240,
DATA 247,
DATA 166,
DATA 240,
DATA 200,
DATA 132,
DATA 116,
DATA 240,
DATA 249,
DATA 64,
DATA 2,
DATA 176,
DATA 147,
DATA 200,
DATA 48,
DATA 198,
DATA 180,
DATA 43,
DATA 93,
DATA 32,
DATA 129,
DATA 46,
DATA 240,
DATA 200,

2048 DATA 141,

2056
2064
2072
2080
2088
2096
2104
2112
2120
2128
2136
2144
2152
2160
2168
2176
2184
2192
2200
2208
2216
2224
2232
2240
2248

DATA 2,
DATA 72,
DATA 201,
DATA 96,
DATA 32,
DATA 181,
DATA 116,
DATA 224,
DATA 255,
DATA 118,
DATA 165,
DATA 96,
DATA 32,
DATA 34,
DATA 165,
DATA 2,
DATA 164,
DATA 208,
DATA 34,
DATA 129,
DATA 96,
DATA 73,
DATA 184,
DATA 2,
DATA 137,

BLOCK 3

11,
144,

114,
216,

165,
133,
133,
17,
165,
165,
96,
32,
230,
129,
235,
198,
145,
201,
128,
165,
169,
3,

17,
17,
64,
197,
119,
42,
165,
197,
32,
200,
96,
33,
33,
34,
133,
18,
127,
76,

255, 179,

184,
11,
246,
208,
96,
118,
18,
165,
165,
33,
230,
200,
32,
208,
177,
116,
72,
96,
165,
198,
76,

(CHECKSUM FOR BLOCK 3

119,
196,
3,
164,
177,
237,
132,
32,
133,
119,
2,
180,
133,
3,
49,
130,
232,
42,
128,
92,
ls,
156,
200,
0,
246,
208,
140,
169,
114,
208,
240,
32,
32,
184,
6,
32,
133,
229,
120,
43,
208,
31,
177,
130,
2,
33,
208,
165,
32,
17,
116,
239,

133
118
76
82
119
232
5
113
180
208
144
16
129
32
168
166
200
101
133
134
117
164
148
2
47
33
5
179
212
1

3
163
40
208
169
196
65
65
133
133
4
208
31
116
198
164
235
9
246
16
141
126

48814 )

2256
2264
2272
2280
2288
2296
2304
2312
2320
2328
2336
2344
2352
2360
2368
2376
2384
2392
2400
2408
2416
2424
2432
2440
2448
2456
2464
2472
2480
2488
2496
2504
2512
2520
2528
2536
2544
2552
2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664

DATA 208,
DATHR 32,
DATA 41,
DATA 92,
DATA 112,
DATA 144,
DATA 92,
DATA 32,
DATA 127,
DATA O,
DATA 166,
DATA 232,
DATA 6,
DATA 92,
DATA 208,
DATA 122,
DATA 162,
DATA 56,
DATA 238,
DATA 48,
DATA 48,
DATA 246,
DATA 18,
DATA 51,
DATA 10,
DATA 184,
DATA 49,
DATA 196,
DATA 196,
DATA 247,
DATA 119,
DATA 32,
DATA 32,
DATA 208,
DATA 34,
DATA 16,
DATA 5,
DATA 133,
DATA O,
DATA 118,
DATA 119,
DATA 201,
DATA 144,
DATA 145,
DATA 176,
DATA 144,
DATA 32,
DATA 118,
DATA 95,
DATA 208,
DATA 6,
DATA 177,

BLOCK 4

251,
223,
134,
170,
o,
231,
44,
131,
32,
133,
93,
228,
169,
240,
36,
117,
176,
233,
32,
244,
221,
184,
208,
162,
208,
165,
32,
118,
118,
114,
32,
177,
196,
11,
208,
233,
202,
56,
176,
165,
160,
48,

118,

32,
186,
92,
200,
197,
200,
160,
207,
210,
159,
152,
135,
1,
17,
9,
48,
160,
127,
74,

232,
133,
133,
177,
135,
177,
0,
169,
255,
200,
56,
144,
133,
16,
48,
193,
177,
170,
113,
96,
210,
17,
160,
161,
32,
166,
182,
33,
196,
196,
118,
240,
32,
196,
240,
4,
248,
120,
32,
133,
162,
17,
124,
208,
139,
44,
32,
169,
32,
196,
207,
215,

116,
70,
93,
92,

144,
92,

132,
32,
32,
36,

101,
10,
70,

212,

204,
76,

134,

160,

177,

117,

255,

166,

100,

119,

245,
18,
32,
32,

118,

118,

165,

226,

196,

118,

238,

221,

240,

133,

246,

120,

0,
72,

118,

232,

118,

240,

196,

255,

196,

118,
32,
32,

76,
166,
160,
208,
235,
170,
124,
164,
185,

70,

92,
197,
133,
201,
132,
223,
133,

0,
132,
200,
208,

18,
132,
208,
190,
133,
196,
166,
208,
165,

95,

32,
118,
240,
170,

25,
221,
57,
184,
165,
189,

32,
104,

32,

32,
184,
118,
133,
118,
197,
196,
156,

(CHCCKSUY FOR BLOCK 4

255,
40,

3,
228,
200,
132,
124,
116,

16,
144,
134,
159,
255,
124,
186,
132,
202,

177,
246,
152,
50,
4,
32,
48,
118,
118,
3.
96,
145,
196,
201,
197,
240,
127,
165,
32,
32,
56,
1,
112,
160,
112,
118,
208,
32,
96,
197,
18,
118,
118,

179
165
177

76
134
177

16¢
23

144
177
240

32

96
132
240
249
132

32

134
169
246
134

150
196
133

17
208

32
230

51819 )



09

2672
2680
2688
2696
2704
2712
2720
2728
2736
2744
2752
2760
2768
2776
2784
2792
2800
2808
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936
2944
2952
2960
2968
2976
2984
2992
3000
3008
3016
3024
3032
3040
3048
3056
3064
3072
3080

DATA
DATA

31,
166,
241,
247,
133,
160,
249,

BLOCK 5

147,
198,
132,
26,
165,
95,
208,
2,
179,
43,
93,
33,
153,
240,
119,
160,
168,
32,
32,
207,
108,
215,
177,
31,
34,
225,
105,
76,
165,
208,
169,
16¢,
72,
133,
76,
32,
127,
177,
32,
9,
201,
73,
144,
144,
169,
76,
114,
31,
3,
200,

96,
192,
203,

2,

13,
185,
208,
169,
177,
132,

116,
32,
165,
96,
132,
51,
24,
49,
96,
120,
89,
93,
45,
177,
0,
16,
37,
177,
32,
119,
194,
85,
162,
34,
133,
177,
210,
32,
133,
118,
240,
32,
133,
133,
169,
32,
224,
241,
177,
133,
241,
208,
176,
32,
165,
230,
32,
241,
248,
4,
132,
9,

212,
25,
158,
12,
160,
31,
9,
138,
14,
4,
158,
31,
32,
158,
76,
169,
133,
145,
177,

118,
208,
113,
96,
95,
48,
95,

119,
42,
92,

233,
10,
16,
80,
61,
72,

196,

216,
76,
169,
210,
136,
32,
32,
113,
144,
66,
32,
119,
169,
32,
133,
241,
208,
0,
69,
41,
201,
201,
9,
241,
105,
198,
241,
239,
1,
133,
31,
31,

(CHECKSU!" FOR RLOCK 5

32,
126,
133,
133,
136,
200,

129
198
160
50
34
96
196
119
76
92
44

33
36
32
49
177
39
210
32
126
32
160

187
186
165
230
210
255
255
133
240
169

17
169

31

16

73
176
144
208
192
133
208
158

76
132

32

16

17

48208 )

3088
3096
3104
3112
3120
3128
3136
3144
3152
3160
3168
3176
3184
3192
3200
3208
3216
3224
3232
3240
3248
3256
3264
3272
3280
3288
3296

DATA 147,

3304 “DATA 5,

3312
3320
3328
3336
3344
3352
3360
3368
3376
3384
3392
3400
3408
3416
3424
3432
3440
3448
3456
3464
3472
3480
3488
3496

DATA 241,
DATA 160,
DATA 209,
DATA 219,
DATA 85,
DATA 32,
DATA 32,
DATA 133,
DATA 241,
DATA 241,
DATA 237,
DATA 192,
DATA 246,
DATA 113,
DATA 32,
DATA 133,
DATA 150,
DATA 16,
DATA 165,
DATA 32,
DATA 201,
DATA 34,
DATA 76,
DATA 198,

BLOCK 6

240,
208,
177,
112,
208,
113,
133,
240,
36,
132,
133,
208,
200,
152,
136,
31,
16,
224,
126,
76,
13,
64,
169,
6,
185,
212,
241,
32,
76,
0,
165,
169,
169,
165,
147,
150,
170,
164,
32,
241,
32,
201,
223,
150,
41,
6,
202,
233,
94,
182,
0,
201,

32,
210,
112,
200,
119,

8,

96,
244,
241,
160,
164,
150,
131,
240,
223,
239,
186,
133,
191,
230,
133,
181,
240,

76,
230,

2,

208,
207,
5,
186,
208,
76,
157,
208,
201,
43,
32,
3,
74,
165,
176,

223,
132,
208,
32,
32,
32,
160,
207,
255,
32,
40,
208,
165,
182,
76,
183,
158,
243,

201,
180,
255,

76,
240,
173,

(CHECKSUN FOR BLOCK 6

G4,
200,
208,

0,
144,
32,
5,
113,

31,

24,
230,
162,
179,
141,
132,
201,

32,
177,
208,
169,
111,

13,

32,
133,
251,
120,
131,
204,
165,
169,

32,

32,
209,
187,
255,

32,
206,
169,
243,
128,
230,
133,
165,
179,

37,
249,
111,

201
48
36

201
32

201
209
24
2
74
145
208
133
138
32
12
76
2
131
36
213
119
246
8
32
240
174
131
132
133
208
255
211
0
192
192
208
32
208
20
243
0
165
241
202
42
131
32
244
165
2

54546 )



9

3504
3512
3520
3528
3536
3544
3552
3560
3568
3576
3584
3592
3600
3608
3616
3624
3632
3640
3648
3656
3664
3672
3680
3688
3696
3704
3712
3720
3728
3736
3744
3752
3760
3768
3776
3784
3792
3800
3808
3816
3824
3832
3840
3848
3856
3864
3872
3880
3888
3896
3904
3912

DATA
DATA
DATA
DATA
DATA
DATAH
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

41,
4,
141,
141,
32,
166,
3,
224,
132,
246,
32,
241,
17,
206,
58,
111,
158,
142,
224,
189,
240,
163,
208,
122,
133,
219,
250,
200,
152,
105,
32,
122,
231,
34,
224,
240,
223,
145,
204,
231,
34,
224,
176,
225,
145,
204,
3,
224,
3,
224,
133,
32,

BLOCK 7

127,
13,
132,
135,
225,
216,
142,
16,
120,
184,
163,
122,
133,
129,
123,
2,
76,
129,
25,
152,
123,
181,
18,
32,
18,
160,
200,
177,
24,
0,
185,
174,
133,
180,
172,
79,
9,
33,
174,
133,
180,
172,
23,
9,
33,
169,
144,
96,
174,
133,
96,
150,

32, 23,
123, 162,

208,
240,
134,
24,
111,
208,
202,
152,
123,
208,
16,
122,
235,
224,
189,
158,
166,
131,
180,
119,
32,
166,
208,
169,
133,
177,
197,
93,
133,
165,
185,
232,
224,
2,
136,
231,
32,
3,
202,
224,
2,
136,
231,
32,
3,
145,
224,
134,
189,
219,
124,
0,

234,
226,

(CHECKSUM FOR BLOCK 7

173,
169,
169,
133,
48,
142,
59,
133,
237,
230,
14,
0,
241,
246,
2,
245,
208,
202,
16,
120,
184,
197,
32,
133,
202,
170,
208,
239,
165,
48,
76,
189,
128,
127,
132,
31,
177,
246,
189,
128,
127,
133,
31,
177,
246,
204,
128,
142,
231,
20,
63,
1,

1

0
39
3
92
131
180
119
32
18
32
133
122
32
157
198
249
232
247
32
32
40
185
17
134
208
246
136
219
3
47
152
133
149
3
181
31
176
152
133
149
3
181
31
176
135
149
130
180
124
113
1

54546 )

3920
3928
3936
3944
3952
3960
3968
3976
3984
3992
4000
4008
4016
4024
4032
4040
4048
4056
4064
4072
4080
4088
4096
4104
4112
4120
4128

‘4136 T

4144
4152
4160
4168
4176
4184
4192
4200
4208
4216
4224
4232
4240
4248
4256
4264
4272
4280
4288
4296
4304
4312
4320
4328

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

240,
169,

23,

235,
200,
152,

32,
218,
173,
173,
192,

238,
41,
218,
96,
170,
160,
119,
173,
119,
230,
92,
92,

36,
104,

242,
207,
162,
207,
8,
243,
232,
2,
124,
68,
42,
92,
42,
43,
42,
101,
31,
230,
32,
76,
101,
144,
165,

K 8

6,
32,
124,
240,
36,
177,
123,

208,

176,
144,

33,
202,
180,
124,
133,
200,
164,

152,
127,

85,
132,
18,

157,
0,
32,
198,
32,
92,
93,
24,
43,
56,
232,
198,
208,
242,
0,
165,
164,
86,
141,

32,
254,

(CHECKSUM FOR RLOCK 8

24,
230,
233,
208,
133,
132,

80,

1,

245
32
48

240

117
32
32

230

3
96
3

133
72

219

133

170

132
96

230

3

177

240

230

177
32

128

104

169

226
32

223
32

176

208

232

162
76

144

165

165

133

133

229
24

177
32

181

3
87
88

179

140

51798 )



Z9

4336 DATA 255, 1, 165, 46, 164, 47, 133, 42 4752 DATA 169, 8, 133, 175, 32, 204, 255, 76

4344 DATA 132, 43, 164, 5, 136, 185, 252, 1 4760 DATA 60, 124, 169, 0, 240, 2, 169, 2
4352 DATA 145, 92, 136, 16, 248, 32, 233, 181 4768 DATA 133, 131, 32, 231, 255, 32, 60, 245
4360 DATA 32, 182, 180, 76, 127, 124, 162, 1 4776 DATA 166, 209, 240, 51, 134, 9, 169, 1
4368 DATA 32, 198, 255, 32, 207, 255, 133, 134 4784 DATA 133, 210, 169, 8, 133, 212, 169, 15
4376 DATA 32, 207, 255, 133, 135, 5, 134, 201 4792 DATA 133, 211, 16¢, 0, 133, 209, 32, 99
4384 DATA 48, 240, 22, 166, 134, 165, 135, 32 4800 DATA 245, 32, 204, 255, 165, 9, 133, 209
4392 DATA 49, 215, 32, 207, 255, 32, 210, 255 4808 DATA 169, 2, 133, 210, 169, 8, 133, 212
4400 DATA 201, 13, 208, 246, 104, 104, 76, 60 4816 DATA 165, 131, 133, 211, 32, 99, 245, 32
4408 DATA 124, 32, 207, 255, 201, 13, 208, 249 4824 DATA 30, 125, 162, 2, 76, 198, 255, 169
4416 DATA 76, 204, 255, 240, 68, 201, 36, 240 4832 DATA 255, 133, 55, 76, 0, 191, 167, 13
4424 DATA 23, 32, 118, o0, 32, 41, 206, 32 4840 paTA 78, 79, 84, 32, 66, 65, 83, 73
4432 DATA 45, 201, 165, 18, 133, 252, 165, 17 4848 DATA 67, 44, 32, 83, 84, 65, 82, B84
4440 DATA 133, 251, 32, 36, 126, 76, 255, 179 4856 DATA 61, 0, 147, 66, 65, 83, 73, 67
4448 DATA 169, 0, 133, 95, 133, 96, 169, 4 4864 DATA 45, 65, 73, 68, 32, 52, 13, 17
4456 DATA 133, 97, 32, 196, 118, 240, 20, 32 4872 DATA O, O, 137, 138, 141, 167, 72, 69
4464 DATA 141, 215, 162, 4, 6, 96, 38, 95 4880 DATA 76, 208, 65, 85, 84, 207, 66, 82
4472 DATA 202, 208, 249, 5, 96, 133, 96, 198 4888 DATA 69, 65, 203, 67, 72, 65, 78, 71
4480 DATA 97, 208, 231, 32, 135, 207, 76, 112 4896 DATA 197, 68, 69, 76, 69, 84, 197, 70
4488 DATA 121, 76, 239, 126, 208, 251, 16%, 2 4904 DATA 76, 73, 83, 212, 68, 85, 77, 208
4406 DATA 13, 76, 232, 208, 7, 208, 242, 169 4912 pAaTA 70, 73, 78, 196, 72, 69, 216, 67
4504 DATA 253, 45, 76, 232, 141, 76, 232, 176 4920 DATA 82, 212, 75, 73, 76, 204, 76, 79
4512 DATA 255, 179, 32, 207, 255, 133, 252, 162 4928 DATA 87, 69, 210, 77, 69, 82, 71, 197
4520 DATA O, 32, 59, 112, 104, 104, 76, 23 4936 DATA 82, 69, 78, 85, 77, 66, 69, 210
4528 DATA 126, 32, 170, 126, 32, 207, 255, 133 4944 DATA 79, 70, 198, 80, 65, 67, 203, 82
4536 DATA 251, 201, 1, 208, 229, 32, 207, 255 4952 DATA 69, 65, 196, 83, 67, 82, 79, 76
4544 DATA 201, 4, 208, 225, 76, 223, 186, 32 4960 DATA 204, 83, 84, 65, 82, 212, 84, 82
4552 DATA 193, 125, 32, 76, 124, 32, 241, 125 4968 DATA 65, 67, 197, 85, 80, 80, 69, 210
4560 DATA 208, 248, 104, 104, 160, 0, 185, 27 4976 DATA 190, 192, 175, 222, 83, 73, 90, 197
4568 DATA 179, 240, 47, 32, 210, 255, 200, 208 4984 DATA 85, 78, 45, 78, 69, 215, 83, 80
4576 DATA 245, 169, 255, 133, 92, 169, 1, 133 4992 DATA 79, 79, 204, 0, 223, 116, 220, 113
4584 DATA 93, 133, 70, 166, 17, 165, 18, 32 5000 DATA 13, 116, 13, 115, 169, 114, 214, 125
4592 DATA 18, 117, 32, 20, 113, 201, 239, 240 5008 DATA 209, 118, 13, 115, 82, 125, 120, 119
4600 DATA 217, 96, 32, 170, 126, 32, 207, 255 5016 DATA 70, 112, 155, 125, 123, 124, 134, 117
4608 DATA 133, 251, 32, 207, 255, 133, 252, 32 5024 DATA 162, 120, 1, 120, 91, 126, 32, 114
4616 DATA 29, 126, 76, 60, 124, 166, 251, 165 5032 DATA 9, 126, 211, 116, 164, 125, 187, 120
4624 DATA 252, 32, 131, 207, 162, 32, 169, 36 5040 DATA 187, 120, 5, 121, 3, 121, 48, 126
4632 DATA 32, 49, 215, 32, 23, 215, 76, 223 5048 DATA 177, 120, 119, 126, 0, 112, 77, 114
4640 DATA 186, 240, 22, 162, 254, 134, 251, 232 5056 DATA 179, 121, 49, 49, 48, 52, 56, 49
4648 DATA 134, 252, 32, 170, 126, 32, 207, 255 5064 DATA 170, 170, 170, 170, 170, 170, 170, 170
4656 DATA 32, 57, 213, 164, 1506, 240, 246, 208 BLOCK 10 (CHECKSUM FOR BLOCK 10 = 34939 )

4664 DATA 206, 56, 165, 42, 229, 40, 133, 251
4672 DATA 165, 43, 229, 41, 133, 252, 32, 29
4680 DATA 126, 76, 255, 179, 32, 174, 126, 32
4688 DATA 207, 255, 164, 150, 8, 32, 210, 255
4696 paTa 40, 208, 10, 32, 20, 113, 201, 239
4704 paTA 208, 237, 76, 228, 125, 76, 57, 124
4712 DATA 240, 30, 32, 174, 126, 173, 64, 232
4720 DATA 41, 251, 141, 64, 232, 169, 4, 133
4728 DATA 212, 32, 213, 240, 32, 72, 241, 169
4736 DATA 0, 133, 175, 133, 174, 76, 255, 179
4744 DATA 169, 2, 133, 174, 169, 4, 133, 176

BLOCK 9 (CHECKSUM FOR BLOCK 9 = 55525 )



€9

8032 Basic-Aid ;

1000
1008
1016
1024
1032
1040
1048
1056
1064
1072
1080
1088
1096
1104
1112
1120
1128
1136
1144
1152
1160
1168
1176
1184
1192
1200
1208
1216
1224
1232
1240
1248
1256
1264
1272
1280
1288
1296
1304
1312
1320
1328
1336
1344
1352
1360
1368
1376
1384
1392
1400
1408
1416

FOR J=28672 TO

DATA 169,
DATA 173,
DATA 176,
DATA 181,
DATA 202,
DATA 76,
DATA 120,
DATA 76,
DATA 32,
DATA 14,
DATA 112,
DATA 241,
DATA 133,
DATA 160,
DATA 129,
DATA 245,
DATA 144,
DATA 166,
DATA 113,
DATA 1,
DATA o,
DATA 242,
DATA 131,
DATA 128,
DATA 20,
DATA 23,
DATA 240,
DATA 23,
DATA 30,
DATA 9,
DATA 208,
DATA 23,
DATA 20,
DATA 240,
DATA 80,
DATA 32,
DATA 240,
DATA 52,
DATA 133,
DATA 18,
DATA 95,
DATA 147,
DATA 96,
DATA 1,
DATA 2,
DATA 134,
DATA 201,
DATA 112,
DATA 58,
DATA 170,
DATA 201,
DATA 77,

BLOCK 1

0,
206,
7,
162,
16,
35,
173,
131,
210,
120,
202,
126,
132,
80,
132,
24,
2,
54,
160,
208,
1,
169,
16,
48,
48,
131,
45,
131,
32,
24,
242,
131,
113,
52,
251,
52,
251,
113,
158,
232,
162,
207,
133,
201,
240,
174,
35,
l64,
176,
211,
180,
165,

(CHECKSUNM FOR BLOCK

32735
141,
127,
133,
15,
248,
114,
255,
113,
255,
162,
16,
169,
169,
169,
32,
169,

128,

: READ X

136,
174,
52,
189,
162,
230,
1,
189,
232,
23,
248,
128,
10,
15,

16,

3,
207,
134,
43,
19,
119,
76,
249,
208,
189,
76,
133,
133,
133,
113,
101,
198,
134,
5,
240,
157,
48,
22,
o,
191,
192,
44,
9,
200,
157,
44,
9,
174,
232,
36,
33,
240,
208,
173,
201,
32,
208,
129,
48,
135,
240,
132,
129,
32,
0,
.32,

2,

POKE J,X :

141,
127,
53,
112,
32,
208,
81,
126,
245,
153,
166,
133,
131,
124,
198,
132,
131,
96,
200,
11,
17,
54
131,
177,

137, 3
224, 128
32, 233
149, 112
59, 112
2, 230
113, 234
240, 6
96, 208
211, 149
120, 76
169, 65
162, 0

177, 132

124, 208
133, 132
208, 226
32, 63
185, 0
202, 185
131, 208
157, 17
232, 165
119, 240
128, 157
208, 237
160, 157
246, 176
132, 48
131, 232
160, 157
246, 32

3, 202
77, 232
208, 252
52, 113
72, 32
169, 0
232, 205
96, 133
205, 76
230, 133
189, 1
120, 224
119, 134
48, 11
32, 90
128, 201

3, 76

2, 1
113, 144
119, 162

1 = 53306 )

SYS 7*4096

1424
1432
1440
1448
1456
1464
1472
1480
1488
1496
1504
1512
1520
1528
15306
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1672
1680
1688
1696
1704
1712
1720
1728
1736
1744
1752
1760
1768
1776
1784
1792
1800
1808
1816
1824
1832

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLOCK 2

138, 24,
43, 133,
33, 200,

165, 43,

180, 165,

133, 42,

233, 181,
32, 112,
70, 32,

208, 7,

115, 32,

190, 32,

133, 119,

(CHECKSUM FCR BLOCK

132,
253,
19,
250,
232,
165,
le9,
112,
76,
246,
42,
96,
162,
189,
232,
232,
120,
127,
88,
152,
134,
240,
10,
32,
214,
240,
139,
127,
228,
240,
140,
3,
151,
52,
134,
93,
4,
120,
34,
101,
43,
208,
197,
31,
144,
76,
0,
244,
162,
112,
52,
134,

116,
120,

208,
158,
2,
165,
32,
10,
136,
33,
120,
133,
0,
230,
176,
32,
232,
179,
128,
165,
134,
240,
165,
32,

92,
223,

185
19
189
208
132
189
32
116
104
173
109
0
157
6
32
34
133
2
76
129
134
1
201
151
217
3
127
72
237
3
169
213
168
166
181
1
92
229
176
152
119
230
32
105
43
251
0
201
32
32
166
186

2 = 51652 )



9

1840
1848
1856
1864
1872
1880
1888
1896
1904
1912
1920
1928
1936
1944
1952
1960
1968
1976
1984
1992
2000
2008
2016
2024
2032
2040
2048
2056
2064
2072
2080
2088
2096
2104
2112
2120
2128
2136
2144
2152
2160
2168
2176
2184
2192
2200
2208
2216
2224
2232
2240
2248

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLOCK

208, 11, 200, 152,
119, 144, 2, 230,
240, 5, 32, 094,
247, 114, 132, 82,
166, 46, 165, 47,
240, 216, 221, 0,
200, 198, 128, 208,
132, 129, 165, 70,
116, 165, 49, 56,
240, 40, 200, 240,
249, 24, 152, 101,
64, 201, 75, 176,
2, 198, 128, 24,
176, 5, 32, 171,
147, 116, 165, 129,
200, 165, 49, 240,
48, 189, 0, 2,
198, 130, 208, 245,
180, 133, 42, 165,
43, 165, 119, 166,
93, 166, 64, 165,
32, 20, 113, 201,
129, 76, 90, 115,
46, 169, 0, 149,
240, 47, 197, 128,
200, 208, 242, 132,
141, 3, 2, 142,
2! 8' 104, 141,
72, 16%, 255, 72,
201, 171, 240, 4,
96, 76, 241, 126,
32, 40, 116, 32,
181, 32, 118, 0,
116, 32, 112, 0,
224, 165, 17, 5,
255, 133, 17, 133,
118, 133, 64, 32,
165, 17, 197, 64,
96, 165, 119, 133,
32, 165, 42, 133,
34, 96, 165, 31,
165, 32, 197, 34,
2, 230, 32, 164,
164, 129, 200, 145,
208, 235, 96, 165,
34, 198, 33, 164,
129, 145, 33, 32,
96, 201, 34, 208,
73, 128, 133, 9,
184, 165, 18, 208,
2, 169, 127, 96,
137, 3, 76, 255,

179,

101, 119, 133
32, 196, 118
176, 3, 76
82, 164, 82
128, 177, 119
208, 237, 232
136, 132, 5
91, 32, 113
47, 133, 180
177, 119, 208
201, 2, 144
165, 180, 16
5, 133, 129
240, 3, 32
229, 49, 168
133, 130, 166
119, 232, 200
165, 42, 101
101, 128, 133
133, 92, 134
32, 18, 117
240, 156, 164
119, 200, 148
185, 0, 2
S, 246, 47
96, 208, 33
2, l40, 5
2, 169, 179
76, 114, 212
45, 208, 1
5, 240, 3
184, 32, 163
11, 32, 40
246, 184, 208
208, 6, 169
96, 32, 196
118, 133, 65
18, 229, 65
165, 120, 133
165, 43, 133
33, 208, 4
230, 31, 208
200, 177, 31
32, 130, 116
208, 2, 198
177, 33, 164
116, 208, 235
72, 165, 9
96, 32, 246
165, 17, 16
198, 116, 141
76, 241, 126

3 (CHECKSUI FOR ELOCK 3 = 4£818 )

2256
2264
2272
2280
2288
2296
2304
2312
2320
2328
2336
2344
2352
2360
2368
2376
2384
2392
2400
2408
2416
2424
2432
2440
2448
2456
2464
2472
2480
2488
2496
2504
2512
2520
2528
2536
2544
2552
2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664

BLOCK

208,
32,
41,
92,

112,

144,
92,
32,

127,

166,
232,

92,
208,
122,
162,

238,

246,

4

251, 32,
223, 186,
134, 92,
170, 200,
0, 197,
231, 200,
44, 160,
131, 207,
32, 210,
133, 159,
93, 152,
228, 135,
169, 1,
240, 17,
36, 9,
117, 48,
176, 160,
233, 127,
32, 74,

118, 240,

(CHECEKSUMH

232,
133,
133,
177,
135,
177,
0,
169,
255,
200,
56,
144,
133,
16,
48,
193,
177,
170,
113,
96,
210,
17,
160,
161,
32,
166,
182,
33,
196,
196,
118,
240,
32,
196,
240,
4,
248,
120,
32,
133,
162,
17,
124,
208,
139,
44,
32,
169,
32,
196,
207,
215,

116,
70,
93,
92,

144,
92,

132,
32,
32,
36,

101,
10,
70,

212,

204,
76,

134,

160,

177,

117,

255,

166,

100,

119,

245,
18,
32,
32,

118,

118,

165,

226,

196,

118,

238,

221,

240,

133,

246,

120,

0,
72,

118,

232,

118,

240,

196,

255,

196,

118,
32,
32,

76,
166,
160,
208,
235,
170,
124,
164,
185,

70,

92,
197,
133,
201,
132,
223,
133,

0,
132,
200,
208,

18,
132,
208,
190,
133,
196,
166,
208,
165,

95,

32,
118,
240,
170,

27,
221,

57,
184,
165,
189,

32,
104,

32,

32,
184,
118,
133,
118,
197,
196,
156,

FOR RLOCK 4

255, 179
40, 165
0, 177
3, 76
228, 134
200, 177

124, 41
116, 169
16, 23

134, 144
159, 177
255, 240
124, 32
186, 96
132, 132
202, 240
16, 249
177, 132
246, 32

50, 134

4, 169
32, 246
48, 134
118, 32
118, 32

96, 145
145, 119
196, 118
201, 34
197, 201
240, 188
127, 240
165, 119

32, 112

32, 80

56, 133

1, 1
112, 0
160, 0
112, 0
118, 0
208, 150

32, 196

96, 133
197, 17

18, 208
118, 32
118, 230

51821 )



S9

2672
2680
2688
2696
2704
2712
2720
2728
2736
2744
2752
2760
2768
2776
2784
2792
2800
2808
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936
2944
2952
2960
2968
2976
2984
2992
3000
3008
3016
3024
3032
3040
3048
3056
3064
3072
3080

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

129,
230,
32,
43,

133,
182,
165,
118,
208,
255,
165,
165,
132,

74,

33,
108,
215,

92,
119,
255,
141,

32,

49,

133,
169,

255,
179,

31,
166,
241,
247,
133,
160,
249,

PLOCK 5

32,
43,
147,
198,
132,
96,
165,
95,
208,
2,
179,
43,
93,
33,
153,
240,
119,
160,
168,
32,
32,
207,
108,
215,
177,
31,
34,
225,
105,
76,
165,
208,
169,
169,
72,
133,
76,
32,
127,
177,
32,
9,
201,
73,
144,
144,
169,
76,
114,
31,
3,
200,

132,

177,
o,
16,
37,
177,
32,
119,
194,
85,
162,
34,
133,
177,
210,
32,
133,
118,
240,
32,
133,
133,
169,
32,
224,
241,
177,
133,
241,
208,
176,
32,
165,
230,
32,
241,
248,
4,
132,
9,

160,
31,
9,
138,
14,
4,
158,
31,
32,
158,
76,
169,
133,
145,
177,

42,
118,
208,
113,

96,

95,

48,

95,

0,
119,

42,

92,
233,

10,

16,

80,

61,

72,
196,

61,
216,

76,
169,
210,
136,

32,

32,
113,
144,

66,

32,
119,
169,

32,
133,
241,
208,

0,

69,

41,
201,
201,

9,
241,
105,
198,
241,
241,

1,
133,

31,

31,

208,
198,

116,
165,

76,
133,

32,
230,

96,
133,
197,
160,
102,
244,

200,

126,
133,
133,
136,
200,

2
129
198
160

50
34
96
196
119
76
92
44

33
36
32
49
177
39
210
32
126
32
160
92
187
186
165
230
210
255
255
133
240
169
17
169
31
16
73
176
144
208
192
133
208
158
76
132
32
16
17

{CHECKSUH FOR BLOCK 5 = 48292 )

3088
3096
3104
3112
3120
3128
3136
3144
3152
3160
3168
3176
3184
3192
3200
3208
3216
3224
3232
3240
3248
3256
3264
3272
3280
3288
3296
3304
3312
3320
3328
3336
3344
3352
3360
3368
3376
3384
3392
3400
3408
3416
3424
3432
3440
3448
3456
3464
3472
3480
3488
3496

DATA 32,
DATA 133,
DATA 241,
DATA 241,
DATA 237,
DATA 192,
DATA 246,
DATA 113,
DATA 32,
DATA 133,
DATA 150,
DATA 16,
DATA 165,
DATA 32,
DATA 201,
DATA 34,
DATA 76,
DATA 198,

BLOCK 6

240,
208,
177,
112,
208,
113,
133,
240,
36,
132,
133,
208,
200,
152,
136,
31,
16,
224,
126,
76,
13,
64,
169,
6,
185,
212,
241,
32,
76,
0,
165,
169,
169,
165,
147,
150,
170,
164,
32,
241,
32,
201,
223,
150,
41,
6,
202,
233,
94,
182,

'
56,

170,
177,
133,
120,
252,
208,
247,
201,
169,
111,
32,
241,
32,
32,
210,
112,
200,
119,
8,
96,
244,
241,
160,
164,
150,
131,
240,
223,
239,
186,
133,
191,
230,
133,
181,
240,
76,
230,
229,

32,
32,
3,
150,
208,
207,
Se
186,
208,
76,
157,
208,
201,
43,
32,
3,
.74,
165,
226,

32,
32,
32,
160,
207,
255,
32,
40,
208,
165,
182,
76,
183,
158,
201,

201,
180,
255,
76,
240,
2,

(CHECKSUM FOR BLOCK 6

208,
0,
144,
32,
5,
113,
31,
24,
230,
162,
179,
141,
132,
201,
32,
177,
208,
169,
111,
13,
32,
133,
251,
120,
131,
204,
165,
169,
32,
32,
209,
187,
255,
32,
206,
169,
243,
128,
230,
133,
165,
179,
37,
249,
176,

201
48
36

201
32

201
209
24
2
74
145
208
133
138
32
12
76
2
131
36
213
119
246
8
32
240
174
131
132
133
208
255
211
0
192
192
208
32
208
20
243
0
165
241
202
42
131
32
244
165
240

54770 )



99

3504
3512
3520
3528
3536
3544
3552
3560
3568
3576
3584
3592
3600
3608
3616
3624
3632
3640
3648
3656
3664
3672
3680
3688
3696
3704
3712
3720
3728
3736
3744
3752
3760
3768
3776
3784
3792
3800
3808
3816
3824
3832
3840
3848
3856
3864
3872
3880
3888
3896
3904
3912

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLOCK

173,
231,
223,
141,
165,
173,
225,

85,
133,
232,
230,

14,

242,
162,
232,

142,
140,
215,
101,
120,
184,
197,

32,
133,
202,
170,
208,
239,
165,
122,
202,
231,
132,

31,

31,
176,

85,

34,
176,
111,

33,
169,
144,
134,
129,

24,
132,

25,
162,

7

111,
173,
165,
134,
225,
111,
208,
202,
231,
119,
32,
18,
32,
133,
122,
0,
228,
230,
129,
131,
188,
226,
32,
32,
40,
196,
17,
134,
208,
246,
136,
219,
76,
189,
133,
3,
189,
145,
214,
231,
172,
22,
231,
204,
32,
248,
9,
3,
101,
219,
124,
0,

34,
240,
109,

33,
174,
133,
134,
189,
133,
135,
200,
189,
166,
189,
226,

32,

32,
189,

41,

141,
165,
133,
48,
142,
60,
101,
120,
184,
163,
122,
133,
129,
112,
208,
216,
142,
202,
231,
1,
123,
181,
18,
32,
18,
160,
200,
177,
24,
0,
122,
231,
172,
68,
231,
204,
132,
33,
3,
86,
32,
3,
145,
110,
226,
85,
144,
22,
63,
1,

218,
197,
218,
93,
133,
33,
3,
84,
32,
3,
202,
110,
236,
133,
177,
246,
204,
96,
130,

188,

200,
133,

32,
240,

(CHECKSUM FOR BLOCK 7

17,
4,
165,
135,
225,
216,
142,
231,
1,
123,
208,
16,
122,
235,
46,
111,
158,
208,
160,
225,
231,
119,
32,
166,
208,
169,
133,
177,
197,
93,
133,
32,
3,
189,
136,
231,
200,
144,
232,
231,
133,
31,
31,
176,
135,
162,
3,
110,
133,
96,
147,
6,

208
240
226

3

123
228
129
189
200
176
2
208
169
32
123
2
76
247
0
176
24
132
246
93
14
255
218
218
92
208
92
196
232
110
236
133
177
246
189
133
3
189
145
214
3

0
174
231
218
32
123
32

55381 )

3920

3928
3936

3944

3952

3960
3968
3976

3984

3992

4000

4008
4016

4024
4032
4040
4048
4056
4064
4072
4080
4088
4096
4104
4112
4120
4128
4136
4144
4152
4160
4168
4176
4184
4192
4200
4208
4216
4224
4232
4240
4248
4256
4264
4272
4280
4288
4296
4304
4312
4320
4328

DATA.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLCCK 8

149, 123,
127, 32,
32, 185,
208, 239,
48, 231,
48, 221,
135, 208,
160, 0,
230, 219,
197, 213,
240, 17,
39, 138,
122, 176,
32, 196,
24, 101,
219, 165,
96, 165,
170, 164,
164, 226,
16, 230,
130, 3,
230, 177,
32, 240,
124, 230,
0, 177,
201, 32,
9, 128,
96, 104,
255, 169,
32, 226,
255, 32,
208, 223,
17, 32,
78, 176,
2, 208,
232, 232,
125, 162,
32, 78,
181, 144,
32, 165,
34, 165,
42, 133,
255, 133,
92, 229,
34, 24,
24, 177,
230, 32,
233, 181,
208, 3,
133, 87,
132, 88,
80, 179,

232,
149,
116,
201,

32,
132,
242,
145,
238,
240,
172,

72,

122,
226,
226,
170,
198,
140,
119,
173,
119,
230,
92,
92,
8,
36,
104,
1,
242,
207,
162,
207,
8,
243,
232,
2,
124,
68,
42,
92,
42,
43,
42,
101,
31,
230,
32,
76,
101,
144,
165,

243,
1,
31,
241,
33,
93,
176,
144,
33,
202,
180,
124,
133,
200,
164,

169,
25,
4,
235,
200,
l4¢,
32,
218,
173,
173,
196,
3,
238,
189,
144,
3,
160,
145,
160,
230,
197,
176,
211,
230,
134,
40,
2,
186,
242,
179,
227,
207,
18,
255,
157,
96,
32,
125,
177,
165,
92,
165,
170,
3,
3,
200,
208,
173,
24,
85,
132,
18,

(CHECKSU! FOR BLOCK €

32,
124,
240,

36,
177,
123,

36,
208,
130,
131,
225,

32,
132,

85,

169,
32,
165,
255,
232,
157,
0,
32,
198,
32,
92,
93,
24,
43,
56,
232,
198,
208,
242,
0,
165,
164,
86,
141,

41
8
52
9
132
164
124
2

3

3
240
242
3
231
230
170
132
96
240
238
176
201
25
160
127
2
64
204
2
207
150
133
224
0

2
195
255
163
133
133
101
105
165
198
32
249
32
2
42
43
32
254

52888 )



L9

4336
4344
4352
4360
4368
4376
4384
4392
4400
4408
4416
4424
4432
4440
4448
4456
4464
4472
4480
4488
4496
4504
4512
4520
4528
4536
4544
4552
4560
4568
4576
4584
4592
4600
4608
4616
4624
4632
4640
4648
4656
4664
4672
4680
4688
4696
4704
4712
4720
4728
4736
4744

DATA 133,
DATA 252,
DATA 233,
DATA 162,
DATA 133,
DATA 134,
PATA 135,
DATA 210,
DATA 76,
DATA 208,
DATA 36,
DATA 206,
DATA 165,
DATA 255,
DATA 169,
DATA 20,
DATA 38,
DATA 96,
DATA 76,
DATA 1692,
DATA 242,
DATA 232,
DATA 252,
DATA 76,
DATA 255,
DATA 207,
DATA 186,
DATA 243,
DATA 185,
DATA 200,
DATA 1,
DATA 18,
DATA 239,
DATA 207,
DATA 252,
DATA 251,
DATA 169,
DATA 76,
DATA 251,
DATA 207,
DATA 246,
DATA 133,
DATA 32,
DATA 126,
DATA 210,
DATA 201,
DATA 59,
DATA 64,
DATA 4,
DATA 241,
DATA 255,

BLOCK 9

140, 255,
42, 132,
1, 145,
181, 32,
1, 32,
134, 32,
201, 48,
32, 49,
255, 201,
62, 124,
249, 76,
240, 23,
32, 45,
17, 133,
179, 169,
4, 133,
32, 141,
95, 202,
198, 97,
112, 121,
2, 13,
169, 253,
76, 255,
162, o0,
25, 126,
133, 251,
255, 201,
32, 195,
125, 208,
27, 179,
208, 245,
133, 93,
32, 18,
240, 217,
255, 133,
32, 31,
165, 252,
36, 32,
223, 186,
232, 134,
255, 32,
208, 206,
251, 165,
31, 126,
32, 207,
255, 40,
239, 208,
124, 240,
232, 41,
133, 212,
169, O,
179, 169,

1, 165,
43, 164,
92, 136,
182, 180,
198, 255,
207, 255,
240, 22,
215, 32,

13, 208,

32, 207,
204, 255,

32, 118,
201, 165,
251, 32,

0, 133,

97, 32,
215, 162,
208, 249,
208, 231,

76, 241,

76, 232,

45, 76,
179, 32,

32, 59,

32, 172,
201, 1,

4, 208,

125, 32,
248, 104,
240, 47,
169, 255,
133, 70,
117, 32,

96, 32,
251, 32,
126, 76,

32, 131,

49, 215,
240, 22,
252, 32,

57, 213,

56, 165,

43, 229,

76, 255,
255, 164,
208, 10,
237, 176,

30, 32,
251, 141,

32, 213,
133, 175,

2, 133,

46, 164,
5, 136,
16, 248,
76, 129,
32, 207,
133, 135,
166, 134,
207, 255,
246, 104,
255, 201,
240, 68,
o, 32,
18, 133,
38, 126,
95, 133,
196, 118,
4, G,
5, 96,
32, 135,
126, 208,
208, 7,
232, 141,
207, 255,
112, 104,
126, 32,
208, 229,
225, 176,
78, 124,
104, 160,
32, 210,
133, 92,
166, 17,
20, 113,
172, 126,
207, 255,
62, 124,
207, 162,
32, 23,
162, 254,
172, 126,
164, 150,
42, 229,
41, 133,
179, 32,
150, 8,
32, 20,
230, 125,
176, 126,
64, 232,
240, 32,
133, 174,
174, 169,

47
185
32
124
255
5
165
32
104
13
201
41
252
76
96
240
96
133
207
251
208
76
133
104
207
32
223
32
0
255
169
165
201
32
133
166
32
215
134
32
240
40
252
176
32
113
76
173
169
72
76
4

(CHECKSUM FOR BLOCK 9 = 55393 )

4752
4760
4768
4776
4784
4792
4800
4808
4816
4824
4832
4840
4848
4856
4864
4872
4880
4888
4896
4904
4912
4920
4928
4936
4944
4952
4960
4968
4976
4984
4992
5000
5008
5016
5024
5032
5040
5048
5056
5064

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BLOCK

133,
255,
169,
60,
169,
162,
32,
133
133,
245,
255,
167,
83,
82,
73,
13,
72,
66,
78,
197,
77,
216,
76,
71,
69,
203,
79,
g4,
69,
90,
83,
220,
216,
120,
134,
32,
187,
50,
77,
56,

10

70,
208,
67,
79,
197,
210,
82,
76,
82,
210,
197,
80,
113,
125,
119,
117,
114,
120,
126,
114,
49,

(CHECKSUM FOR BLOCK 10

169,
62,
133,
166,
133,
133,
245,
169,
165,
32,
255,
78,
67,
61,
45,
0,
76,
69,
197,
76,
70,
82,
87,
82,
79,
69,
204,
65,
190,
85,
79,
13,
209,
70,
162,
11,
187,
177,
179,
170,

65,
83,
67,
192,
78,
79,
116,
118,
112,
120,
126,
120,
120,
121,
170,

133,
1692,

240,
169,
169,
204,
133,
133,
162,
55,
84,
32,
147,
73,
137,

203,

73,
77,
85,
80,
83,
65,
85,
222,
78,
0,
115,
115,
125,
120,
116,
121,
126,
48,
170,

49,
170,

204
2
32
9
212
209
9

8
99
198
191
65
65
83
52
167
207
65
84
85
69
204
82
66
67
82
212
80
73
215
116
114
125
124
126
125
121
112
57
170

= 34935)



