- A Tale of Four BASICs

which one for your 6800 ?

Rich Didday
1218 Broadway
Santa Cruz CA 95062

e
Rich has provided us with a

rather gory look at what
vou'll have to go through if
you're foolish enough (as he
was) to try implementing
foreign BASIC interpreters on
your machine. But, the pri-
mary intent of his article is to
provide a review and com-
parison of four popular
BASICs for 6800-based ma-
chines . . . and he does an

excellent job. 1°d like very
much to see other articles
along this line comparing
8080-based BASICs, assem-
blers, text editors and others.
— John.

have four different ver-

sions of BASIC up and
running on my 6800-based
system, and | have the feeling
that | might have a few more
before I'm through. I'm not
collecting BASIC interpreters
as if they were old coins or
something — it's just that |
want to find a version that
really suits me. What am |
looking for? | want a version
that: 1. will run any program
written in ANSI Minimal
BASIC (see Box 1); 2. is
convenient to use; 3. is

50

reasonably fast; 4. is reason-
ably inexpensive.

Besides that, |'ve just been
curious about what sort of
software products is be-
coming available.

| thought |'d share my
experiences with you, so that
if you're thinking of buying a
version of BASIC, you might
find some of your questions
answered here — before you
send in your hard-earned
cash.

There’s a wide range of
differences among the four

Cost for Cost for
Version. Manufacturer. paper tape. cassette (KC Std.).

Sphere provisional Sphere Corp. $3254 $300°
nonextended BASIC 791 South 500 West

Bountiful UT 84010
Pittman Tiny BASIC Itty Bitty Computers $5

P.O. Box 23189

San Jose CA 95153
SWTPC 8K BASIC Southwest Technical Products $20 $9.95
Version 1.0 Corporation

219 W. Rhapsody

San Antonio TX 78216
TSC Micro BASIC Plus Technical Systems Consultants $6 $6.95
Version 2.1 Box 2574 + +

W. Lafayette IN 47906 $15.95D $15.95b

versions, and, depending on
your priorities, almost any
one might be best for you. |’ll
cover every aspect | can think
of, from cost to speed to
documentation to numerical
accuracy to range of state-
ments provided, etc.

The Four BASICs

Table 1 shows the four
BASICs, with the latest prices
| could find. |'ve listed them,
and I'll discuss them, In
historical order of their
appearance on my system.

As you may have guessed
by looking at the price, |
didn’t purchase Sphere’s pro-
visional nonextended BASIC
— it came with my system. It
was the first version | had up
and running, the one |I've
used the least, and the main
force behind my search for
other versions.

Next | ordered a copy of
Pittman Tiny BASIC; it
showed up immediately (less
than two weeks). Since it's
available only on paper tape,
| had to get my friend Nick

aThis is the price listed for “BASIC Version 1’ in the June 1976 Global News (Sphere’s newsletter). | believe
that this is the “provisional nonextended BASIC" that comes with the Sphere 330.

bThe documentation for TSC Micro BASIC Plus is priced and sold separately.

Table 1. The four BASICs.

BASIC is a higher-level, interactive computer language that was
originally developed at Dartmouth College in the middle 1960s.
The design goal was to create a reasonably powerful language
that would be particularly easy for beginners to learn and use.

It is easy to learn, and it is also easy to implement. That is,
compared to other higher-level languages, it is relatively simple
to write a program that accepts statements in BASIC and carries
them out. This program (which is a machine-language program
tailored to the system it is to run on) is called an interpreter. An
interpreter differs from a compiler, which is a program that
accepts statements in some higher-level language and translates
them into a machine-language program that can be run later to
carry out the instructions of the original higher-level program.
An interpreter, on the other hand, translates each statement of
the higher-level program each time it comes to it, and carries it
out immediately.

If you buy one of the four versions of BASIC discussed in
this article, you get a copy of a machine-language program (i.e.,
the interpreter) plus documentation that describes what you got,
how to tailor it to your system and how to use it. More
abstractly, you also get the capability to enter, alter and run a
broad variety of programs in some variant of the higher-level
language BASIC.

There are, then, two different sorts of questions you need to
answer in order to decide which version is best for you.

1. Questions about the interpreter, considered as a machine
language program in and of itself. For example: Will the
interpreter run properly on your system. Will it be hard to adapt
to idiosyncrasies of your system (will it be hard to install) ? How

2. Questions about the language the interpreter accepts. For
example: What statements are allowed? What data types are
allowed? How fast will a given program be carried out? How
convenient is it to enter, alter and run programs using this
interpreter? How useful are the error messages?

The answers to these questions are not all simple. Here's just
one example. You might think that the more statement types a
version of BASIC lets you use, the better; or that the more
statements stolen from FORTRAN or ALGOL or whatever your
real favorite language is, the better. In fact, every vendor sticks
fancy little things in his version to try to attract and hold you.
But what if one of your goals is to be able to trade programs
with other people? What if you don't want to do much
programming yourself, but want to buy programs to run on your
system? Then anything but the fairly well-agreed-on, “standard”
statements in your BASIC will be useless.

This factor itself would be easier to judge if there were an
agreed-on standard version. The American National Standards
Institute (ANSI) has been working on a set of standards for what
they call “"Minimal BASIC" for some time now, (A draft of the
proposed American National Standard Programming Language
Minimal BASIC, report BSR X3.60, X3J2, January 1976, is
available from: CBEMA /Secretary X3, 1828 L St. NW, Washing-
ton DC 20036.) Their plan is to define a minimal subset, and
then define a series of ““enhancements” covering such things as
string manipulation, matrix operations, file manipulation, etc.
When they finally agree on the standards, we’ll be in better shape
— you’'ll be able to tell exactly what's included in a version if it
says “ANSI| Minimal BASIC with string enhancement.”” Right

much memory space will it need? What’s the cost?

Box 1.

now, you're on your own! Good luck.

to make a copy on cassette
tape. | got it flying with
relatively little effort, and
have used it to write a fairly
lengthy game program. It's a
carefully done piece of soft-
ware, and |'d use it more if |
didn’t care about being able
to write programs that con-
form to the proposed ANSI
standards.

The third version was
Southwest Tech’s 8K BASIC.
| knew when | got it that it
was made specifically for the
SWTPC 6800 machine, that it
didn't come with a source
version of the interpreter, and
that it would certainly be a
lot of work (or maybe even
impossible) to convert it to
my system; but | felt like a
challenge, or else | was
desperate (I don't remember
which). As it turns out, it's
the version that | use most.

The fourth is TSC's 6800
Micro BASIC Plus, which, as
the name implies, - lies
between Tiny BASIC and a
full version like SWTPC’s 8K
in size and capabilities. It
arrived instantaneously (less
than one week).

Documentation

There’s quite a range here,
all the way from virtually
nothing up to a 68-page
booklet describing the
product inside and out (see
Table 2).

The documentation pro-
vided with Tiny BASIC,
SWTPC 8K, and Micro BASIC
Plus is generally very good.
Each gives thorough descrip-
tions of each statement type.
They're all good about giving
little examples of the use of
each construct, they all list
error message meanings, and
they all give lists of the mem-

Version

Sphere provisional
nonextended BASIC

Pittman Tiny BASIC

SWTPC 8K BASIC
Version 1.0

TSC 6800 Micro BASIC
Plus, Version 2.1

ory addresses of important
stored variables (start of user
program, entry points to the
interpreter, end of memory
pointer, etc.).

I've programmed in BASIC
for quite a while, so it’s hard
for me to be certain, but |
think someone who had never
programmed before might be
able to pick up enough from
the Tiny BASIC documenta-
tion to be able to write pro-
grams. The others assume
that you know something
about programming, and |

Pro-

Range of Statements
vided

Table 3 shows the state-
ments that are provided by
each of the four versions.
You can probably figure out
what most of them do. If not,
see Tlable 1 in Stephen

Pereira’s ““Now It's Imsai
BASIC!" Kilobaud WNo. B5,

May, 1977.

Though all four BASICs
have quite a few statement
types in common, there are
some slight differences. All
provide a limited text-editing

guess Sphere assumes you're capability, which lets you
clairvoyant. enter (numbered) lines, list
Number of pages
of documentation Contents
3 A list of legal keywords and operators

plus two pages telling how to load the tape.

26 Clear descriptions of statement types and
meanings, three pages of sample programs,
instructions for installation on seven
different systems.

26 Clear descriptions with small examples of
all statements.

68 Clear descriptions of all statement types
with examples, lots of useful little side
notes, plus complete listing of assembly
language source text (well commented).

Table 2. Documentation.

" 91

them to see what you've got,
and wipe out or alter existing
lines. Since many, if not
most, home users will be
employing TVs or other video
displays, it’s important to be
able to list only a specified
number of lines. The typical
form for doing this is: LIST
30,120 — which lists all lines
from number 30 up to and
including number 120. All
except Sphere allow this
form. As nearly as | can tell,
there is no way in Sphere’s
version to have a look at the
first part of a long program.
Forms like LIST 30 are
allowed, but list all state-
ments from line 30 through
the end of the program. Even
though Sphere does every-
thing slowly, it doesn’t list
slowly enough for you to
read the program on the fly.

Every version provides a
way to wipe out the program
you‘ve been working on and

start a new one. In Sphere
and TSC, you type
SCRATCH. In Tiny BASIC,
you type CLEAR; and in
SWTPC 8K you type NEW.

Two versions have a com-
mand that returns control to
the host computer’s monitor.
PATCH does this in SWTPC
8K; MONITOR does it in
Micro BASIC Plus. Tiny
BASIC doesn’t have a sep-
arate command for it, but it's
not hard to put together two
calls to the USR function
(which carries out machine
language routines for you) to
accomplish it (and Pittman’s
documentation makes it per-
fectly clear).

In Sphere, the only way to
get back to the monitor (or
even to just interrupt an
executing program) is to
(shudder) reset the machine.
On my system, that means
you're flirting with disaster,
since hitting the reset switch

Sphere provisional nonextended BASIC

Commands Statements Functions
RUN* DATA ABS
LIST* DIM ATAN
SCRATCH* DEF COS

END EXP

FOR NEXT STEP INT

GOSUB LOG

GOTO RND

IF THEN SGN

INPUT SIN

LET SQR

MAT TAN

PRINT

READ coON: "}

REM IDN

RESTORE INV matrix

RETURN TRN —[‘ operations

STOP ZER

TSC Micro BASIC Plus

Commands Statements Functions
RUN* DATA ABS
LIST® DIM RND
SCRATCH* END SGN
MONITOR* EXTERNAL* SPC

FOR NEXT STEP TAB

GOSUB*

GOTO*

IF THEN

INPUT

LET*

ON GOSUB

ON GOTO

PRINT?*

READ

REM

RESTORE*

RETURN

stops the dynamic memory
refresh. After a while, you get
pretty good at getting your
finger off the reset button
quickly, but still

Both TSC and Pittman tell
you carefully and completely
what to do if you don’t like
their choices of breakpoint,
back space and prompt char-
acters. Specifically, they tell
vou where those characters
are stored, so you can insert
your own choices if you wish.
SWTPC doesn’t give you that
information, and you're stuck
with what they give vyou.
Sphere, believe it or not,
doesn’t even have back-space
capability. If you make a
mistake in typing, there’s no
way to go back; you just have
to hit return and wait for the
thing to give you an error
message!

SWTPC 8K comes closest
to being able to run any

(soon to be adopted) ANSI
standards for Minimal BASIC.
SWTPC’s documentation
points this out and notes one
disagreement with the stan-
dards — all arrays start at
location 1 in SWTPC 8K. (In
the proposed standards, it is
the programmer’s option
whether arrays start at 0 or
1.) | haven’t made a detailed
check of SWTPC 8K against
the standards, but since it is
claimed that the array start-
Ing point is the only conflict
with the standards, |'ll men-
tion a few other conflicts |
chanced across.

The first might simply be a
bug | introduced when |
installed the interpreter on
my system. At any rate,
according to the proposed
standards,

20 PRINT ““LINE 17,
30 PRINT “AGAIN”

program that conforms to the 40 END
SWTPC 8K BASIC
Commands Statements Functions
RUN* DATA ABS
LIST* DEF COS
NEW?* DIM EXP
PATCH* END INT
SAVE* FOR NEXT STEP LOG
LOAD* GOSuUB* PEEK
APPEND?* GOTO* POS
LINE* IF THEN* RND
DIGIT* INPUT SGN
LET® SIN
ON GOSUB* SQR
ON GOTO* TAB
POKE* TAN
PORT?* USER
READ*
REM ASC
RESTORE?* CHR$
RETURN LEFTS
STOP* LEN string
MIDS$S | operations
RIGHTS$
STRS$
VAL
Pittman Tiny BASIC
Commands Statements Functions
RUN?* END* RND
LIST* GOSUB* USR
CLEAR* GOTO*
IF THEN*
INPUT*
LET*
PRINT*
REM*
RETURN?*

Table 3. The commands, statement types and functions provided by the four BASICs. Those which can be used in the direct mode, i.e., without
being part of a program, are marked by an asterisk.

52

1000 PRINT ““I *%;

1010 FOR S=1 TO -1
1020 PRINT “DON’T %;
1030 NEXT S

1040 PRINT “CONFORM TO THE ANSI STANDARDS”
1050 PRINT “CONCERNING FOR LOOPS.”

1060 END

Example 1.

I DON’T CONFORM TO THE ANSI STANDARDS
CONCERNING FOR LOOPS.

Example 2.

should vyield a single output
line when run, like this:

LINE 1 AGAIN

but (on my system at least)
the program prints on two
lines:

LINE 1

AGAIN

Another conflict with the
standards concerns FOR
loops. Running the program
in Example 1 in SWTPC 8K
produces the output in Ex-
ample 2.

If the standard had been
followed, the “DON'T”
would not have been printed.
This is because the initial
value of S is already greater
than the upper limit (-1).

Finally, the proposed stan-
dards decree that the random
number generator function
(RND) not take an argument,
and that a command
RANDOMIZE, which initial-
izes RND, be included. In

SWTPC 8K, RND must be

given an argument, as in

LET X=RND(0.0)

and RANDOMIZE is
implemented.

Overall, though, SWTPC
8K is the only one of the four
that comes close to the pro-
posed standards.

Sphere comes next closest
to being able to run any legal
ANSI Minimal BASIC pro-
gram; neither Tiny BASIC
nor Micro BASIC Plus makes
any real pretense of trying to
conform to the proposed
standards. Their design
strategy calls for providing as
much power for the user as

not

possible within a severely
limited memory space, and
that leads both of them away
from standard forms of
BASIC. If your system has
enough memory to run some-
thing like SWTPC 8K, you
can decide how important it
Is for you to be able to run
standard BASIC progams. If
you have only 4 or 5K of
memory, having a full

Minimal BASIC is a frill you
can’t afford.

Sphere’s version does have
some matrix operations (see
Table 3). For example, these
statements

10 DIM A(20,20)
20 MAT A=1DN

store the identity matrix (1s
on the diagonal, 0Os every-
where else) in the array A.
Interestingly enough, these
statements

10 DIM A(20,20), B(20,20)
20 MAT A=INV(B)

do the same thing, no matter
what B is. The documenta-
tion says that INV stands for
inverse, but it has the same
effect as IDN. Oh, well.
SWTPC 8K includes a
number of string operations,
and allows arrays of strings. |
personally find these features
extremely useful. SWTPC also
incorporates the commands
SAVE, LOAD, APPEND,

which (respectively) store an

Approx. memory space

required for interpreter

Version. alone.

Sphere provisional
nonextended BASIC.

Pittman Tiny BASIC.

SWTPC 8K BASIC
Version 1.0.

TSC 6800 Micro BASIC
Plus, Version 2.1.

15.2K

memory.
20K
2 5K 3K
7.1K 8K
3.3K AK

Suggested minimum

active program on tape, load
a program from tape and
append more lines to an
existing program in the
machine. None of the ver-
sions includes an explicit way
to store and retrieve data on
tape — SWTPC makes it
reasonably easy, though.

Memory Requirements

There's a big variety in the
memory requirements of the
four BASICs. Obviously, ver-
sions (like SWTPC) that
include many different legal
commands are going to
require more memory than
those with a more limited
repertoire (like Tiny BASIC).
If your main constraint is
limited RAM, Table 4 may be
enough for you to choose
which of the four is right for
you.

In terms of memory (as
well as other requirements),
Sphere is in a category all its
own. Apparently, it's actually

Memory required
for medium-
sized programs.

Table 4. Memory requirements of the four BASICs.

Internal

Version. representation.

Sphere floating point,
binary,

4 bytes per value

Pittman fixed point,
binary,

2 bytes per value

SWTPC floating point,
BCD,

6 bytes per value

TSC fixed point,
BCD,

3 bytes per value

Number of Decimal
digits Digits of
displayed. accuracy.
6 4 or less
5 4+
9 92 or 6°
5 5

20K
4K
10K
5K
Smallest
number
Largest greater
number. than 0.
5.793E76 4.0E-78"
+32767 1
9.99999999E+99 1.E-99
+99999 1

1S;:)ht.-:-rta- BASIC has a number system all its own — each different scheme | hit on to determine the smallest
number greater than zero produces a different result, some with exponents of -78, others with exponents of

-711.

2Normal arithmetic (+, -, *, /) yields results accurate to 9 decimal digits. The built-in functions (like SIN,
COS, EXP, etc.) give results accurate to 6 decimal digits.

Table 5. Number representatijons in the four BASICs,

53

a batch (as opposed to inter-
active) version lifted (with a
few alterations made and
bugs added) from another
machine. Instead of trans-
lating that version into 6800
machine language, Sphere
wrote an emulator for the
original machine. So, when
you run Sphere’s version,
you're actually simulating
running BASIC on another
machine. While this /s a clever
way to bring up a version of
BASIC on the 6800 rather
rapidly, it requires so much
memory, runs so slowly (as
we’ll soon see) and is so
inconvenient to use that it is
acceptable only as a stopgap
measure. Since other versions
are available, it seems that
Sphere BASIC has little to
recommend it.

Arithmetic

As you can see in Table 5,
two of the versions store
numbers in binary coded
decimal (BCD), two use the
more normal binary represen-
tation. The two larger ver-
sions offer floating-point
numbers (numbers with
exponents and fractional
parts); the two smaller ones
don't.

Both SWTPC and Sphere
provide a range of arithmetic
functions (SIN = trigono-
metric sine, COS = cosine,

LOG = natural logarithm,
SQR = square root, etc.). The
SWTPC arithmetic functions
are accurate to six decimal
digits (operations like adding,
subtracting, multiplying and
dividing are accurate to nine
decimal digits). SWTPC arith-
metic functions are inordi-
nately slow (more on this
later). Most of Sphere’s arith-
metic operations and func-
tions are accurate to four
decimal digits (although they
are displayed to six digits),
but some of them are unbe-
lievably inaccurate. For
example, Sphere’s LOG func-
tion has no digits of accuracy
for arguments around 1.0 (see
benchmark program func-
tions in Table 6). And (see if
vou believe this one), 1/(-1)
evaluates to .25!

All except Micro BASIC
Plus implement the normal
operator precedence rules. In
TSC's version, arithmetic
operations are performed left
to right, unless parentheses
are used to force another
order. Thus, PRINT 1 + 2*3
prints the value 9 in TSC
BASIC. It prints 7 (as you'd
expect) on the other three
versions.

Speed

There are quite a few
factors that affect how fast a
given program will run on

different interpreters. For
instance, you'd expect that,
in general, BASICs that
implement floating-point
arithmetic with a large num-
ber of significant digits would
run slower than versions
restricting themselves to small
integers. On the other hand,
you'd expect that versions
made to fit into a tiny
amount of memory would be
a bit slower than those that
could afford to do more elab-
orate processing on the pro-
gram before it's run. You'd
expect BASICs that provide a
large number of different
statements to run a little
slower, because it probably
will take longer to decipher
any given statement. And, of
course, you'd expect a ver-
sion that was run by simu-
lating another machine would
run many times slower than
one written specifically for
the 6800.

| tested the relative speeds
by running nine benchmark
programs. The first seven are
those used by Tom Rugg and
Phil Feldman in their recent
article (see” “BASIC Timing
Comparisons,” Kilobaud No.
6, June 1977). Table 6 shows
the results of all nine bench-
mark programs.

Since my system runs with
a slow clock, |'ve normalized
all the resulting times. If your

Time (in seconds) to run benchmark programs.@

6800-based system runs at
full-rated clock speed (1
MHz), you should observe the
times shown in Table 6.

There aren’t really any big
surprises in the times taken
for the first seven benchmark
programs. For each of them,
Sphere is more than ten times
slower than the slowest of the
other three. Micro BASIC
Plus seems to be a little faster
than you might expect. One
interesting point is that the
standard BASIC assignment
statement using the keyword
LET, as in 40 LET A=0, runs
faster than the nonstandard
ones used by Rugg and Feld-
man, 40 A=0, at least in Tiny
BASIC. None of the other
versions would accept the
nonstandard assignment state-
ment. TSC’s documentation
says that the nonstandard
form is OK, but on my
particular system, using it
yields obscure error messages.

Since Rugg and Feldman
didn’t run any benchmarks
that tested numeric functions
or string manipulations, |
made up two additional
benchmark programs. They're
shown as Program 1 and Pro-
gram 2.

The function benchmark
(Program 1) measures the
maximum absolute error
encountered in the operations
It goes through. Since

1 9 3 4 5 6 7 functions strings
Sphere 1660 493 1325¢€ 1207 %C 1290¢ 4250¢ 6003d 8059¢ -.
Pittman 41 41%/379 61 62 83 284h gt . 34
SWTPC 15D 25 06 105 109 173% 204 6631C 47
TSC gb 19% 48 51 61 109 223% i -

4The first seven benchmark programs are those used by Tom Rugg and Phil Feldman in their article in Ki/lobaud No. 6, pages 66-70. Times shown
are normalized to show the time required if the 6800 was run at its rated clock speed (1 MHz). To get the actual times observed on my system,
multiply by 1.45 (e.g., TSC 6800 Micro BASIC Plus actually took 9x1.45 = 13.5 seconds to run benchmark program 1 on my system). Times are
believed to be accurate within 2 second.

BThis version of BASIC will not accept the nonstandard assignment statement (e.g., 400 K=0) used by Rugg and Feldman; so LET was inserted as
necessary (as in 400 K=0).

CProgram was actually run for 100 interations; elapsed time was multiplied by 10.
dprogram was actually run for 10 iterations; elapsed time was multiplied by 100.
€Pittman Tiny BASIC does not implement FOR-NEXT loops.

sting nonstandard assignment statements (i.e., without LET).

9Using standard assignment statements (i.e., with “LET""),

hpittman Tiny BASIC has no arrays, so the DIM statement in Rugg and Feldman’s benchmark program number 7 was replaced by a REM
statement. Also, the FOR-NEXT loop in their program was replaced by the equivalent counting loop.

Table 6. Speed,

10 REM :FUNCTION SPEED AND
20 REM :ACCURACY BENCHMARK

30 PRINT “START?”

40 LET T=0

50 LET E=0

60 FOR I=1 TO 1000

70 LET S=EXP(LOG(I))

80 IF ABS(S-1)/1< =T THEN 100

90 LET T=ABS(S-I)/I
100 LET R=1/I
110
120 IF ABS(F - 1.0)
130 LET E=ABS(F - 1.0)
140 NEXT I

150 PRINT “DONE”

LET F=SQR(SIN(R) A 2 + COS(R) A 2)
=E THEN 140

160 PRINT “LARGEST ERROR IN EXP, LOG="";T
170 PRINT “LARGEST ERROR IN SIN, COS, SQR=";E

180 END

Program 1,

40 LET B$=“ABCDEF”’
50 FOR I=1 TO 1000
60 LET C$=A$ + B$
70 LET CS$=LEFTS$(C$,1)
80 NEXT I
90 PRINT “DONE”

100 END

10 REM :STRING MANIPULATION BENCHMARK I
20 PRINT “START”

30 LET A$=0123456789"

Program 2.

EXP(LOG(!l))=l and
SQR(SIN2(X) + COS2(X))=1,
this is an easy test to make.
It’s also a fairly severe test,
since you might expect that
even if, for example, the LOG
function is accurate to six
decimal digits and EXP is
accurate to six, that
EXP(LOG()) might be accu-
rate only to five places or so..

SWTPC comes out well in
the function accuracy test,
T=1.0E-06 and E=3.0E-07,
which means you can really
trust SWTPC's arithmetic
functions to six decimal
digits. The corresponding
error measurements for
Sphere are T=.418655 and
E=1.6307E-4. That means
you can trust Sphere's EXP
and LOG to no decimal
digits, and you can trust
SQR, SIN and COS to three
decimal digits. This may be a
bit overstated — the real
problem is that Sphere’s LOG
function is worthless for argu-
ments around 1.0. QOutside
that range, it seems to be
accurate to three or four
decimal digits.

In terms of speed on the

56

function test, there's a bit of
a surprise. Here, SWTPC is in
the same ball park as Sphere!
For the first seven bench-
marks, SWTPC is from 10 to
30 times faster than Sphere.
All of a sudden, in the func-
tion benchmark, it’s less than
twice as fast. This puzzled
me, so | started playing
around.

At first | hypothesized
that SWTPC was just using
particularly bad algorithms to
compute the functions. This
began to look likely when |
discovered that | could write
a program /n BAS/C that
could compute the SIN func-
tion to nine-digit accuracy
almost as fast as the built-in
SIN could compute it to six
places! (Mine takes 75
seconds to compute the sine
of the 100 angles from -49 to
+49 radians, while the built-in
SIN function takes 72
seconds to do the same.)

Convinced that | was on
the right track, | coded my
routine in machine language
(but using calls to SWTPC's
add, multiply and divide rou-
tines), expecting to speed

things up by a factor of 20 or
30. But my machine-language
sine routine runs just 3.b
times faster than SWTPC's.
This suggests that most of the
time in computing the arith-
metic functions is spent in
the add, multiply and divide
routines, with the overhead
of moving the arguments
around, looping and testing
approaching insignificance. |
haven’t successfully isolated
the problem — every test |'ve
been able to think of has
been inconclusive. | am sus-

picious of the use of the BCD

representation, however. To
get nine decimal digits of
accuracy, SWTPC allocates
five bytes for the fractional
part of each number. Using
normal two’'s complement
binary representation, you
need just four bytes (231=2
147 483 648). Not only does
using BCD take up more
space, but the arithmetic
operations are harder to per-
form.

Each of SWTPC's arith-
metic routines is surprisingly
long — even the one for
negating a value (which is
next to trivial using two's
complement). Their docu-
mentation claims that using
BCD gives greater accuracy.
Nonsense. TSC (which also
uses BCD representation) at
least says something true —
it's easier to convert decimal
numbers into BCD than into
two's complement binary.
But, so what? BCD makes
sense for supermarket cash
reqgisters, where the memory
required to store the conver-
sion program exceeds the
amount of memory needed to
store the inefficient BCD
numbers, but not in a gen-
eral-purpose situation.

Ease of Installation

All four BASICs are
written for the 6800 micro-
processor. Of course that
doesn’t mean that they’ll
work properly on just any old
6800-based system. Some are
specifically fitted to specific
systems (Sphere’s is intended
to work on the Sphere 330 or
340 and no other machines;
SWTPC’s is intended to run

on the SWTPC 6800 com-
puter and no other; Micro-
BASIC Plus is intended to run
on a number of different
systems; Tiny BASIC is de-
signed to be usable on a very
broad range of 6800-based
systems). Given your specific
system, you face a variety of
potential trouble spots in
trying to install a given
BASIC. To name a few: Do
you have RAM at the loca-
tions required by the inter-
preter? Are your |/O inter-
faces of the type and at the
addresses assumed by the
person who wrote the inter-
preter? Does your output
device accept and properly
interpret the control char-
acters these versions tend to
tack onto output? Etc., etc.

The conflict that caused
me the most trouble is a
battle for the use of the
bottom page of RAM — on
my system the ROM monitor
uses part of the bottom page
for temporary storage. With
the 6800, unlike with the
8080, there’s a legitimate
reason for the hardware
manufacturer to preempt part
of the bottom page of mem-
ory — instructions that refer
to the bottom page take up
one less byte than those that
directly access higher mem-
ory locations. If a manufac-
turer provides a large program
in ROM, he’ll save space,
hence money, using the bot-
tom page for storage. Of
course, the software producer
has to make sure his software
package takes less space than
the competition’s; so, he’ll
also want to use the bottom
page. Everything's fine except
for the end user: you and me.

Table 7 shows about how
long it took me to get the
four versions working on my
system. Of course, the num-
bers for Sphere and SWTPC
can change radically, depend-
ing on which machine you
have. If | hadn’t had a Sphere
system, the time required to
get Sphere provisional non-
extended BASIC working

would have been substantial.
Note! Please do not write

me asking for a copy of my
kludged-up version of SWTPC

8K BASIC. You don’t want
it. It’s not the right solution
to the problem. Maybe if
enough people with 6800-
based non-SWTPC machines
wrote to SWTPC, they would
do something about it.
Pittman does the best job
of explaining how to install
his version. He even provides
hints and sample programs
for the necessary |/O drivers
on seven different systems.
. TSC says in their advertise-
ments that their version re-
quires continuous memory
space from location O wup
through the end of everything
(i.e., at the end of your
BASIC program is space for
data values; your program is
stored after the interpreter
itself). Since that condition
isn‘t satisfied on my system
(due to the conflict with loca-
tions used by my monitor),
maybe | should have just
given up there. But, instead,
since a well-commented
assembly-language source list-
ing of the interpreter s
included in TSC's documenta-
tion, | was able to go through
and shift references to mem-
ory locations my monitor
uses. That took about four

Version

Sphere provisional
nonextended BASIC

Pittman Tiny BASIC

SWTPC 8K BASIC

TSC 6800 Micro BASIC Plus

hours.
Then | spent about two

hours writing the /O drivers,
and | was ready to watch it
fly. | ‘typed .in: PRINT
“HELLO"” and was rewarded
with HELLO. So far, so good.
Then | typed PRINT 2 and
got 2. Feeling confident, |
typed PRINT +2 and was
presented with a situation in
which the processor ran wild,
wiping out part of the inter-
preter, winding up in an
infinite loop, endlessly
cycling through part of high
memory space. (Let me skip
the gory details of how | was
able to detect all that.) |
spent some four or five hours
tracking down where the
problem was occurring (this
phase would have taken much
longer without the source
listing of the interpreter).
Finally, two things clicked
into place, and | realized
what was going on.

First, the problem didn’t
occur in one specific spot,
but randomly in one of three
consecutive instructions.
Second, the carnage started at
a consistent location, which
happens to be the place my
system jumps to respond to a

Time to install

hardware interrupt. Finally, |
looked over the assembly
listing and discovered what |
might equally well have been
able to see in a few minutes if
| had just thought of the
possibility earlier — certain
tests in the TSC arithmetic
routines have the side effect
of turning off the 6800 inter-
rupt mask! Milliseconds after
that, my real-time clock (or
any of my |/O interfaces)
calls for an interrupt, causing
the processor to branch to

where the interrupt-handling
routine should have been —

and Kapow! OK ... so out
with the manuals to figure
out how to tell all the PIAs
and ACIAs not to request
interrupts, grumble, grumble,
and finally, after about 12
hours, Micro BASIC Plus was
up and flying.

I’'ve saved SWTPC 8K for
last in this discussion of “ease
of installation’ because it's a
special case. SWTPC wants
you to buy an SWTPC 6800
computer to run their BASIC
on — they make no claim that
it'll work on any other
system, and they supply no
instructions for installing it
on anything but an SWTPC

Comments

No problems — made to run on my

No particular problem — just had to

write |/O routines and test for break

SWTPC 8K BASIC is made to run on the

SWTPC 6800 only. Since | had neither an
SWTPC 6800 nor a source listing of the
BASIC interpreter, | had to slog through raw
machine code trying to find out why it kept
blowing up, to find where the |1/O drivers
were called, locate references to memory
locations that my monitor thinks are its
" alone, change control characters, alter stack

pointer initializations, etc.

30 minutes
specific system
3 hours
character routine.
75 hours
12 hours

As they say in their catalog, *’. . . TSC 6800

programs require RAM starting at memory
location 00 and continuing uninterrupted
through the amount required by the

program . .

.'"and, to repeat, there are some

low memory locations that my monitor thinks
it owns. It took me about six hours to go
through the source listing to find all conflicts,
decide where to move the offending memory
assignments, make the changes, write /0O
routines. Then it took another four hours or

so to discover that TSC turns off the interrupt
mask during some arithmetic operations. That's
rude of them.

Table 7. Ease of installation.

6800. That means you'd have
to be a fool, crazy, or both to
try to bring it up on any
other system. | plead guilty,
and promise |'ll never do it
again. But since | did it this
once, | thought it might be
interesting to run through
some of the trouble spots.

Actually, 1t was a team
project. My friend Nick did a
couple of days’ work to get
things started. He deciphered
the SWTPC cassette-tape
format and figured out where
to insert calls to 1/O routines,
then turned it over to me. At
this point, we had a BASIC
that gave us an error message
for every line or command we
typed in. It also put out a
tremendous number (for my
system) of extraneous control
characters, so that the ready
prompt looked something
like:

HH#
#H##READY

But that was a secondary
problem.

Armed only with a few old
SWTPC newsletters and a lot
of coffee, | plunged in. For a
few days, | alternated
between trying to track down
the location where everything
went haywire and just
browsing through the 7K+ of
raw machine code, trying to
get some vague feeling for
what was what. Let me re-
count one problem in some
detail.

Arithmetic expressions
weren’t being evaluated
properly, so | started tracking
down what the interpreter
did to evaluate them. | estab-
lished that a particular return
address was getting clobbered
in the middle of processing
the expression 1 + 2%3.
Before a particular subroutine
jump, the return addresses on
the stack were OK. After it,
one of them had been
changed, changed to a value
that was obviously wrong. So,
| started looking at the sub-
routine to see if | could figure
out (vaguely) what it did. |
couldn’t really tell, though,
since it consisted of a bunch
of subroutine calls. | jumped
into the middle, set a break-

57

SWTPC 8K BASIC uses a simulated stack (i.e., a stack that uses
neither the 6800 stack pointer register nor the 6800 stack
operation instructions) to save the contents of the index register
from time to time. Naturally, there is a Push routine and a Pop
routine, and a pair of memory locations to store the address of
the current stack top. And, of course there’s code that initializes
the address at the beginning of everything. When installed on the
SWTPC 6800 computer (or on any system using the MIKBUG

stack pointer
return.

oo

monitor), this address is initialized to AO7F 1. Since | have no
memory at that location, | picked an address essentially at
random in-a region where | do have RAM. | picked 48001g. That
| turned out to be a disastrous choice. Here's why.
The Push routine works like this:

get current stack pointer

decrement it twice (using the DECX instruction, which

performs a full 16-bit decrement)

store the contents of X in the place pointed to by the

So, after carrying out the Push routine once, the value of the
stack pointer will be 4800-2 = 47FEg. So far so good.
The Pop routine works like this:
get current stack pointer
copy the contents of the (two) bytes indicated by the
stack pointer into the X register

increment the second byte of the stack pointer twice

(using the
increment)
return.

INC instruction, which performs an 8-bit

Now. Suppose we’ve just returned from whatever dirty work
we were up to and want to restore the index register to its
previous value. We call the Pop routine; it restores the X register
and then leaves the stack pointer with the value 4700! (Not

4800, as it should be.)

After the next Push/Pop sequence, the stack pointer will be
at 4600, and soon it'll be down among our BASIC program,

wreaking havoc!

Note that this is not a bug in SWTPC 8K BASIC. The author
of the interpreter knew what he was doing, had determined that
no combination of circumstances could require the use of more
than 7Eqg bytes in this particular stack, and so initialized the
stack pointer to AO7F. The cure for my case was simple. All |
needed to do was initialize the stack pointer to 477F instead of
4800. If only | had had some way of knowing that beforehand!

This particular problem is just one of many. It's of no great
interest in and of itself — it does show the sort of pitfalls
awaiting you when you try to do things the wrong way. No
person in his or her right mind would attempt to install a
7000-byte machine-language program on an alien system with no

relevant documentation.

Box 2.

point, got back into BASIC,
typed in my sample state-
ment (PRINT 1 + 2%3), hit
return, and then when the
Interpreter hit the break-
point, | looked at the return
address that was causing
trouble. It was still OK. So, |
moved the breakpoint later in
the subroutine and repeated
until the offending call re-
vealed itself.

Then | looked at that sub-
routine. It too consisted of a
bunch of subroutine calls, so
| repeated the process. After
several hours, | finally found
the place where the return
address was being clobbered.
Box 2 describes what was
causing the problem. Once |
figured out what was wrong,
the solution took about 30

seconds! Finally, | could
evaluate arithmetic ex-
pressions. After just two

days’ hard work.

If | had it to do over again,
| wouldn’t. What | have now
is a kludged-together, slightly
unstable mess, which usually
runs properly. If and when
SWTPC issues a new, im-
proved version of their 8K,
I‘ll have to go through hours
of work to bring it up on my
systems — most of the time
['ve put in on this version will
be wasted. Making absolute

53

——

machine-language patches in a
large program that is virtually
undocumented is just the
wrong way to go. Period.

Bugs — Theirs and Yours

Let’s face it. Sphere pro-
visional nonextended BASIC
(the only version Sphere has
ever made available, to my
knowledge) is a disaster. The
others have few blatant bugs,
but there are some rough
edges here and there. In
Micro BASIC Plus, for ex-
ample, if an array A has been
dimensioned to be of size 25
(say), your program can refer
to and store into all locations
from A(-25) to A(25). Appar-
ently just the absolute value
of the subscript is checked.
This can lead to some hard-
to-discover bugs in programs
that involve complex sub-
script expressions. In addi-
tion, if by chance you give an
array a dimension of 99
(which the manual says is not
legal, but the interpreter
doesn’t check for), no sub-
script checking seems to be
done at all, thus giving you a
method to wipe out other
data, your program, the inter-

preter.... Another rough
edge in TSC’s BASIC is that
leading zeros aren't sup-

pressed on printed negative

values.

Here’'s a rough edge in
SWTPC’s 8K: The test for
string inequality is a little
wacky if the string values
being compared are of differ-
ent lengths. This makes it a

little awkward to get
“SMITH” to come before
“SMITHY"” when vyou're

putting a list of names in
alphabetical order. (See Table
8 for a fix you can use that
isn‘t too terribly slow.)

I've used Tiny BASIC fre-
quently and haven’t come
across anything |I'd be willing
to call a bug or a rough edge.

Of the four, Sphere seems
to do the best job of error
checking the program as you
enter it. Of course, there’s no
way to know what the error
numbers mean since that
wasn’t included in the docu-
mentation. At any rate,
Sphere is the only version
that checks each newly
entered line for syntax errors
as it's entered. Micro BASIC
Plus will complain if it can't
identify the keyword of a
newly entered line (but not
about any deeper errors).
SWTPC doesn’t complain
about illegal keywords on
entry, but does print a ques-
tion mark in front of them
when you list your program.

Tiny BASIC doesn’t check
the newly entered line at all,
it just stores it. That’s no help
In writing programs, but it
does mean that you can use
the Tiny BASIC system as a
sort of text editor — you
could enter in some text, list
it, correct it, make a hard
copy listing, and then cut off
the line numbers, | suppose.

All four versions give error
diagnostics if an illegal state-
ment Is encountered during
execution of your program. |
ran some tests to judge how
appropriate the error
messages seemed to be —
Tiny BASIC won most of my
tests, although | suspect that
Sphere would win if | knew
what its error numbers
meant.

Overall Conclusions

Sphere BASIC has the
most bugs in it, and is the
hardest to use. Pittman Tiny
BASIC is the easiest to install
on the widest range of
systems (assuming you have
some way to read paper
tape). SWTPC 8K BASIC has
the most features and comes
closest to the proposed ANSI
standards. TSC’s Micro
BASIC Plus runs the first five
benchmark programs faster
than any of the other three.

10 PRINT “NAME 1="";

20 INPUT S$

30 PRINT “NAME 2="7;

40 INPUT R S

100 REM :COMPARE THE STRINGS
120 IF S$ < =R$ THEN 200
130 PRINT R$:“ COMES BEFORE ”;S$ |

140 PRINT
150 GOTO 10

210 PRINT
220 GOTO 10
230 END

RUN
NAME 1=? ADAMS
NAME 2=? BRONSON

ADAMS COMES BEFORE BRONSON

NAME 1=? SMITHY
NAME 2=? SMITH

SMITHY COMES BEFORE SMITH

10 PRINT “NAME 1=";

20 INPUT S§$

30 PRINT “NAME 2=";

40 INPUT RS
50 IF LEN(SS)

70 LET T$=R$
80 LET R$=S$
90 LET S$=T$

100 REM :COMPARE EQUAL SIZED

110 REM :PARTS OF THE STRINGS

< =LEFT$(R$.LEN(S$)) THEN 200
130 PRINT R$:* COMES BEFORE *;S$

120 IF S$§

140 PRINT
150 GOTO 10

200 PRINT S$:;* COMES BEFORE 7 R$

210 PRINT
220 GOTO 10
230 END

RUN
NAME 1=? ADAMS
NAME 2=? BRONSON

NAME 1=? SMITHY
NAME 2=? SMITH

Table 8. The program at the top shows the effects of the quirk in
SWTPC 8K BASIC’s test for string inequality. “SMITHY” comes
before ““SMITH.”” One possible fix appears in the program at the
bottom. Now names will be put into conventional alpha

order. (Underline = operator input.)

Tiny BASIC requires the least
amount of memory, with
Micro BASIC Plus a close
second.

Here's the overall picture,
then. Any one of the four
might be best, given your
specific circumstances
well, on second thought, |
can't imagine any credible
circumstances in which
Sphere would come out on
top. If you have just 4K of
memory, you want Tiny
BASIC. If you have 12 or
16K of RAM in your SWTPC
6800 and you want to have a
full version with strings, you
probably already have

200 PRINT S$:“ COMES BEFORE "R$

ADAMS COMES BEFORE BRONSON

< =LEN(R$) THEN 120
60 REM :R$ IS LONGER, SWAP ’EM

SMITH COMES BEFORE SMITHY

betical |

SWTPC 8K BASIC. If you
have a 6800-based system,
which leaves the bottom page
of memory alone, you'll want
to look into Micro BASIC
Plus. If you don't have a
system that uses the Motorola
MIKBUG monitor system,
and you feel apprehensive
about grunging around in
machine language trying to
bring BASIC up, you prob-
ably want Tiny BASIC.

And if you insist on having
a super-fast, super-cheap,
easy-to-install version that
will accept any ANSI Minimal
BASIC program, well, you'll
have to wait. ®

g .

SELECTRIC TERMINAL

e 14.8 cps print speed

13 inch line length

10 or 12 characters/inch

6 or 8 lines/inch

IBM 2740-1, 2 line control
IBM 2740 keyboard/printer

This deal can't be beal Not only do you get a quaiity
terminal for a fraction of the cost of anything else on

be interfaced to a mini- or microcomputer or used
with IBM computers. These terminals are worth the
price of a typewriler alone Qur warranty 1S limited
to replacing any defective parts for a period of 90
days following receipt of equipment Interchange-
able pnnt element. of course Includes aftractive
desk. Optional documentation package $25.00

SUPER SALE

st $675

CALL (313) 994-3200 TO RESERVE

the market. but you also get typewriter quality, Can

NCE/Compumart offers you the leader in
CRT display controllers. Matrox Video
Rams are complete with memory and re-
quire no processor time for screen re-
fresh. Whether your application is al-
phanumeric, graphic or both, Matrox can
provide a system to meet your needs.

MTX 816 Module (Upper Case only) Composite video output in 8 lines of 16 chars. 179

MTX 1632 Module (Upper and Lower Case) 16 x 32 display includes blink option 225
MTX 1632SL Module (Great with 256" *2) Slave sync allows text superposition 229
MTX 2480 Circuit Board 24 x 80 requires high-persistence phosphor (P39) 395
MTX 256**2 Circuit Board 256 x 256 array graphic (multiples provide color) 630
Matrox ALT-2480 Alpha-Numeric VRAM S-100, 24 lines of 80 char. (needs P39) 295
Matrox ALT-256**2 S$-100, Video Graphics Board Displays 256 x 256 array 395

OO0OopOoon

SORENSEN POWER SUPPLY
$31.50 sinGLE ps.

« precise dc output + 12v dc (nominal), 2 amp, 25 watt - 9-18 extended range = highly
regulated-1.2 mv « accepts from 105-125v « accepts from 50-400 Hz, single phase « very
low output ripple

$60.00 DOUBLE PS.LC

This super quality power supply, from Raytheon, uses silicon transistors which give the
unit a wide ambient-temperature operating range. Also, as a maintenance feature, they
reduce the number of components. An excellent instruction manual is provided which
includes schematics, parts list and troubleshooting information.

Name =] AEL T SO)
Address By 2 . _ e) B3

City State Zip_) e ik 2
Charge my BAC/VISA__ M/C__ Interbank #

Card #
Signature _ .

__Exp. Date

——

Please send me info on the new Commodore PET 2001

computer

Total for goods checked above

Please add 4% for Shipping/Handling + 4% tax if Mich.
resident.

Total Amou nt

Limited 90-day Warranty

Return non-working merchandise within 90 days for replacement or refund. Kits are war-

C41

NCE/CompuMart

ranted to be complete with working components. All items subject to prior sale.

1250 North Main Street, Department KB18
P.0. Box 8610 Ann Arbor, Michigan 48107
994-4445

59

	632
	633
	634
	635
	636
	637
	638
	639
	640

