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Foreword

The RCA Microprocessor (COSMAC) is an LS| CMOS 8-bit register-oriented central processing unit. It is
suitable for use in a wide range of stored-program computer systems and products. These systems may be
either special or general-purpose in nature.

This User Manual provides a detailed guide to the COSMAC Microprocessor. It is written for electrical
engineers, and assumes no familiarity with computers. It describes the microprocessor architecture and its
set of simple, easy-to-use instructions. Examples are given to illustrate the operation of each instruction.

For systems designers, this manual illustrates practical methods of adding external memory and control
circuits. Because the processor is capable of supporting input/output (I/O) devices in polled, interrupt-
driven, and direct-memory-access modes, detailed examples are provided for the use of the /O instructions
and the use of the I/0 interface lines. The latter include direct-memory-access and interrupt inputs, external
flag inputs, command lines, processor state indicators, and external timing pulses.

This manual also describes machine-code programming methods and gives detailed examples. Potential
programming errors are discussed, and various programming techniques are described, including interrupt
response, long branch, and subroutine linkage and nesting. '

This basic manual is intended to help design engineers understand the COSMAC Microprocessor and aid
them in developing simpler and more powerful products based on microprocessors. Users requiring infor-
mation on the operation of the RCA COSMAC Microprocessor software support system should refer to the
MPM-102 ““Program Development Guide for the COSMAC Microprocessor”’.






Introduction

General

The COSMAC Microprocessor has been developed and tested within RCA in a wide variety of appli-
cations. COSMAC is suitable for use in business, education, entertainment, instrumentation, control,
communications, and other applications where stored program control is desired.

The RCA COSMAC Microprocessor is a CMOS byte-oriented central processing unit (CPU). It is suitable
for use in a wide range of stored-program computer systems or products. These systems can be either special
or general-purpose in nature. They are byte-oriented, a byte being eight bits.

COSMAC operations are specified by sequences of one-byte operation codes stored in a memory. These
operation codes are called instructions. Sequences of instructions, called programs, determine the specific
behavior or function of a COSMAC-based system. System functions are easily changed by modifying the
program(s) stored in memory. This ability to change function without extensive hardware modification is
the basic advantage of a stored-program computer. Reduced cost results from using identical hardware
components (memory and microprocessor) in a variety of different systems or products.

The COSMAC microprocessor includes all of the circuits required for fetching, interpreting, and exe-
cuting instructions which have been stored in standard types of memories. Extensive input/output (1/O)
control features are also provided to facilitate system design.

Microprocessor cost is only a small part of total system or product cost. Memory, input, output, power-
supply, system-control, and programming costs are also major considerations. A unique set of COSMAC
features combine to minimize the total system cost.

COSMAC's low-power, single-voltage CMOS circuitry minimizes power-supply and packaging costs.
High noise immunity and wide temperature tolerance facilitate use in hostile environments.

COSMAC compatibility with standard, high-volume memories assures minimum memory cost and
maximum system flexibility for both current and future applications. Program storage requirements are
reduced by means of an efficient one-byte instruction format.

The 40-pin COSMAC system interface is designed to minimize external 1/0 and memory control
circuitry. A single-phase clock, internal direct-memory-access (DMA) mode, flexible 1/0 instructions,
program interrupt, program load mode, and static circuitry are other COSMAC features explicitly aimed
at total system cost reduction. COSMAC does not require an external bootstrap ROM.

Microprocessor programming is facilitated by a variety of support programs or software. Extensive
support software and support hardware are available for use in developing COSMAC systems. Machine-
language programming is sometimes indicated when only a few short programs need to be developed.
COSMAC provides a set of efficient, easy-to-learn instructions which are simple to use.

The COSMAC microprocessor comprises two conservatively designed LSI chips (one 40-pin and one
28-pin dual-in-line package). Appendix C shows the required interconnections for these two LSI chips and
summarizes the COSMAC system interface signals.
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Specific Features
The advanced features and operating characteristics of the RCA COSMAC Microprocessor include:
® static COS/MOS circuitry, no minimum clock frequency
® full military temperature range
® high noise immunity, wide operating-voltage range
® TTL compatibility
® 8-bit parallel organization with bidirectional data bus
® built-in program-load facility
® any combination of standard RAM/ROM via common interface
® direct memory addressing up to 65,536 bytes
m flexible programmed 1/0 mode
® program interrupt mode
= on-chip DMA facility
® four 1/O flag inputs directly testable by branch instruction
® one-byte instruction format with two machine cycles for each instruction
m ©9 easy-to-use instructions

™ 16 x 16 matrix of registers for use as multiple program counters, data pointers, or data registers

System Organization

Fig. 1 illustrates a typical computer system incorporating the COSMAC microprocessor. Operations that
can be performed by COSMAC include:

a) control of input/output (1/0) devices,
b) transfer of binary data between |/O and memory (M),
c) movement of data bytes between different memory locations,

d) interpretation or modification of bytes stored in memory.

i
ADDRESS CLOCK, CLEAR, LOAD (3) cLock
! LATCH U CONTROL
o
RGN A ;
M PU (4) 1/0 [z-o 7l
TIMING & MSC.
ADDRESS (8} STATE CODE (2) DEPENDING ON
RAM/ROM SYSTEM
65536
BYTES COSMAC CONTROL
MAX. MWRITE CKTS
1/0
FLAGS (4) K— pevices

DATA BUS (8) H Voo Vss: Vee
Y

92CS-26554

Fig. 1 — Block diagram of typical computer system using the COSMAC microprocessor.
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For example, COSMAC can control the entry of binary-coded decimal numbers from an input keyboard and
store them in predetermined memory locations. COSMAC can then perform specified arithmetic operations
using the stored numbers and transfer the results to an output display or printing device.

System input devices may include switches, paper-tape/card readers, magnetic-tape/disc devices, relays,
modems, analog-to-digital converters, photodetectors, and other computers. Output devices may include
lights, CRT/LED/liquid-crystal devices, digital-to-analog converters, modems, printers, and other computers.

Memory can comprise any combination of RAM and ROM up to a maximum of 65,536 bytes. ROM
(Read-Only Memory) is used for permanent storage of programs, tables, and other types of fixed data. RAM
{Random-Access Memory) is required for general-purpose computer systems which require frequent program
changes. RAM is also required for temporary storage of variable data. The type of memory and required
storage capacity is determined by the specific application of the system.

* Bytes are transferred between 1/O devices, memory, and COSMAC by means of a common, bidirectional
eight-bit data bus.

Fifteen COSMAC 1/0 control signal lines are provided. Systems can use some or all of these signals
depending on required 1/O sophistication. A four-bit N code is generated by the COSMAC input/output
instruction. It can be used to specify an 1/O device to be involved in an 1/O-memory byte transfer by means
of the data bus, or, alternatively, to specify whether an 1/0 byte represents data, an 1/0 device selection
code, an 1/0O status code, or an 1/O control code. Use of the N code to directly specify an 1/O device
permits simple, inexpensive controt of a small number of 1/0 devices or modes. Use of the N code to specify
the meaning of the word on the data bus facilitates systems incroporatingalarge number of 1/0 devices
or modes.

Four 1/O flag inputs are provided. |/O devices can activate these inputs at any time to signal COSMAC
that a byte transfer is required, that an error condition has occurred, etc. These flags can also be used as
binary input lines if desired. They can be tested by COSMAC instructions to determine whether or not they
are active. Use of the flag inputs must be coordinated with programs that test them.

A program interrupt line can be activated at any time by 1/0 circuits to obtain an immediate COSMAC
response. The interrupt causes COSMAC to suspend its current program sequence and execute a prede-
termined sequence of operations designed to respond to the interrupt condtion. After servicing the inter-
rupt, COSMAC resumes execution of the interrupted program. COSMAC can be made to ignore the inter-
rupt line by resetting its interrupt-enable flip-flop (IE).

Two additional 1/O lines are provided for special types of byte transfer between memory and 1/O devices.
These lines are called direct-memory-access (DMA) lines. Activating the DMA-in line causes an input byte to
be immediately stored in a memory location without affecting the COSMAC program being executed. The
DMA-out line causes a byte to be immediately transferred from memory to the requesting output circuits. A
built-in memory pointer register is used to indicate the memory location for the DMA cycles. The program
sets this pointer to an initial memory location. Each DMA byte transfer automatically increments the pointer
to the next higher memory location. Repeated activation of a DMA line can cause the transfer of any
number of consecutive bytes to and from memory independent of concurrent program execution.

1/O device circuits can cause data transfer by activating a flag line, the interrupt line, or a DMA line. A
program must sample a flag line to determine when it becomes active. Activating the interrupt line causes an
immediate COSMAC response regardless of the program currently in progress, suspending operation of that
program. Use of DMA provides the quickest response with least disturbance of the program.

A two-bit COSMAC state code and two timing lines are provided for use by 1/O device circuits. These
four signals permit synchronization of 1/0 circuits with internal COSMAC operating cycles. The state code
indicates whether COSMAC is responding to a DMA request, responding to an interrupt request, executing
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an input/output instruction, or none of these. The timing signals are used by the memory and 1/0 systems to
signal a new processor state code, to latch memory address bits, to take memory data from the bus, and to
set and reset 1/0 controller flip-flops.

Bytes are transmitted to and from memory by means of the common data bus. COSMAC provides two
lines to control memory read/write cycles. During a memory write cycle, the byte to be written appears on
the data bus and a memory write pulse is generated by COSMAC at the appropriate time. A memory read
level is generated which is used by the system to gate the memory output byte onto the common data bus.

COSMAC provides eight memory address lines. These eight lines supply 16-bit memory addresses in the
form of two successive 8-bit bytes. The more significant (high-order) address byte appears on the eight
address lines first, followed by the less significant (low-order) address byte. The number of high-order bits
required to select a unique memory byte location depends on the size of the memory. For example, a
4096-byte memory would require a 12-bit address. This 12-bit address is obtained by combining 4 bits
from the high-order address byte with the 8 bits from the low-order address byte. One of the two COSMAC
timing pulses strobes the required high-order bits into an address latch (register) when they appear on the
eight address lines. An internal COSMAC register holds the eight low-order address bits on the address lines
for the remainder of the memory cycle. No external latch circuits are required for the low -order address byte.

Three additional lines complete the COSMAC microprocessor system interface. A single-phase clock
input determines operating speed. The external clock may be stopped and started to synchronize COSMAC
operation with system circuits if desired. A single clear input initializes internal COSMAC circuitry in one
step. The load signal line holds the COSMAC microprocessor in the program load mode. The use of this
mode is discussed in the section on Memory and Control Interface.

COSMAC Architecture and Notation

Fig. 2 illustrates the internal structure of the COSMAC microprocessor. This simple, unique architecture
results in a number of system advantages. The COSMAC architecture is based on a register array comprising
sixteen general-purpose 16-bit scratchpad registers. Each scratchpad register, R, is designated by a 4-bit
binary code. Hexadecimal (hex) notation will be used here to refer to 4-bit binary codes. The 16 hexa-
decimal digits (0,1,2,...E,F) and their binary equivalents (0000 0001,0010,...,1110,1111) are listed in
Appendix A.

Using hex notation, R(3) refers to the 16-bit scratchpad register designated or selected by the binary code
0011. R(3).0 refers to the low-order (less significant) eight bits or byte of R(3). R(3).1 refers to the high-
order (more significant) byte of R(3).

Three 4-bit registers labeled N, P, and X hold 4-bit binary codes (hex digits) that are used to select
individual 16-bit scratchpad registers. The 16 bits contained in a selected scratchpad can be copied into the
16-bit A register. The two A-register bytes are sequentially placed on the eight external memory address
lines for memory read/write operations. Either of the two A-register bytes (A.0/A.1) can also be gated to
the 8-bit data bus for subsequent transfer to the D register. The 16-bit value in the A register can also be
incremented or decremented by 1 and returned to the selected scratchpad register to permit a scratchpad
register to be used as a counter.

The notation R(X), R(N), or R(P) is used to refer to a scratchpad register selected by the 4-bit code in X,
N, or P, respectivety. Fig. 3 illustrates the transfer of a scratchpad register byte, designated by N, to D. The
left half of Fig. 3 illustrates the initial contents of various registers (hex notation). The operatlon performed
can be written as

R{(N).0—->D

This expression indicated that the low-order 8 bits contained in the scratchpad register designated by the
hex digit in N are to be placed into the 8-bit D register. The designated scratchpad register is left unchanged.
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MEMORY 1/0 BI-DIRECTIONAL
ADDRESS COMMAND DATA BUS
72N
X7
(4) 4
(8)
L meontroL | ] N
(1) LOGIC @) (22
i N
— P /
T ﬂ | . @) «Trrzzzzzrs
te R SELECT
INCR/ R(0).1 |R(0).0
DECR R(1).1 |R(1).0 T
R(2).1 |R(2).0 (8) Y727
| SCRATCH PAD
N e TR x
R(A).T[R(A).0 H/‘_\'*“'—— (@) [
i i 1
R(E).I |R(E).O . : I »
RV REL0] ROl ) oY (@ (L
(8) (8)
8-BIT BUS
L—> MuX :
92CM-26420

Fig. 2 — Internal structure of the COSMAC microprocessor.

The right half of Fig. 3 illustrates the contents of the COSMAC registers after this operation is completed.
The following sequence of steps is required to perform this operation:

1) N is used to select R. (left half of Fig. 3)

2) R(N) is copied into A.

3) A.Ois gated to the bus. (right half of Fig. 3)
4) The bus is gated to D.

N

2 A|o1 25J‘—N
0 P
X
I

xX|wilz

A0
A0 3

3

rRO) | - | - L1z Roy | - |- -
RO L - | IALUI—J Ry | = | - ALUl—J

R(2) | 01 | 25 | R(2} | 01 | 25 be

DF = DF =
R | - | - [o]-| R |- |- rnlzsln—

1 25

Fig. 3 — Use of N designator to transfer data from scratchpad register R(2) to the D register.
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Memory or 1/0 data used in various COSMAC operations are transferred by means of the common data
bus. Memory cycles involve both an address and the data byte itself. Memory addresses are provided by the
contents of scratchpad registers. An example of a memory operation is

M(R(X)) > D

This expression indicates that the memory byte addressed by R(X) is copied into the D register. Fig. 4
illustrates this-operation. The following steps are required:

1) Xis used to select R.
2) R(X) is copied into A. (left side of Fig. 4)
3) A addresses a memory byte.

4) The addressed memory byte
is gated to the bus. (right side of Fig. 4)

5) The bus is gated to D.

Reading a byte from memory does not change the contents of memory.

A oo |0z ME A oo [o2] N3
PloO P o
je—1 X |1 j—{ X 1
ADDRESS
Roy [ - |- i 00 roy | - | - i
R [oo [ozfe  [ac] -] 00 R(1) | 00 | 02 |a— IALU] - ]
R2} | - | - DF = — 00 R2) | — _ DF=—
R3 | - |- I Dl_ I 00 R@ |- | — [D |c5|‘—
cs

Fig. 4 — Transfer of data from memory to the D register.

The 8-bit arithmetic-logic unit (ALU in Fig. 2) performs arithmetic and logical operations. The byte
stored in the D register is one operand and the byte on the bus (obtained from memory) is the second
operand. The resultant byte replaces the operand in D. A single-bit register data flag (DF) is set to “‘O” if no
carry results from an add, subtract, or shift operation. DF is set to ““1'" if a carry does occur. The 8-bit D
register is similar to the accumulator found in many computers.

Instructions and Timing

COSMAC operations are specified by a sequence of operation codes stored in external memory. These
code are called instructions. Each instruction consists of one 8-bit byte. Two 4-bit hex digits contained in
each instruction byte are designated as | and N, as shown in Fig. 5.

6A (HEX)

/_.I__\

| N

[o101] 1010]
7654, 3210

High Order  Low-Order
Digit Digit

Fig. 5 — Eigﬁt—bit instruction format.
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The execution of each instruction requires two machine cycles. The first cycle fetches or reads the ap-
propriate instruction byte from memory and stores the two hex instruction digits in registers | and N. The
values in | and N specify the operation to be performed during the second machine cycle. | specifies the in-
struction type. Depending upon the instruction, N either designates a scratchpad register, as illustrated in
Fig. 3, or acts as a special code, as described in more detail below.

Instructions are normally executed in sequence. A program counter is used fo address successively the
memory bytes representing instructions. In the COSMAC microprocessor, any one of the 16-bit scratchpad
registers can be used as a program counter. The value of the hex digit contained in register P determines
which scratchpad register is currently being used,as the program counter. The operations performed by the
instruction fetch cycle are

M(R{P)) > 1,N;R(P)+1
Fig. 6 illustrates a typical instruction fetch cycle. Register P has been previously set to 1, designating
R(1) as the current program counter. During the instruction fetch cycle, the 0298 contained in R(P) is
placed in A and used to address the memory. The F4 instruction byte at M (0298) is read onto the bus and
then gated into | and N. The value in A is incremented by 1 and replaces the original value in R(P). The
next machine cycle will perform the operation specified by the values in | and N. Following the execute
cycle, another instruction fetch cycle will occur. R(P) designates the next instruction byte in sequence (56).

Alternately repeating instruction fetch execute cycles in this manner causes sequences of instructions that
are stored in memory to be executed.

Al02 98] N |6
e—{ P |1
X
ADDRES: ?
|
02 R(0) | — -

02 R(1) | 02 | 98 | ALUL_I

R | - - DF=— 02 | 99 | 56 rR2 |~ |~ DF = —

| |
R@ | = | - o[- | 02| 9A| 17 Ra) | - | - {o]-]
1 Fa

Fig. 6 — Typical instruction fetch cycle.

The COSMAC machine cycle during which an instruction byte is fetched from memory is called state O
{SO). The cycle during which the fetched instruction is executed is called state 1 (S1). During execution of
a program, COSMAC alternates between SO and S1, as shown below:

.--I'so]si]so]s1|so|s1]:--

Each machine cycle is internally divided into eight equal time intervals, as illustrated in Appendix D
under general timing. Each time interval is equivalent to one external clock cycle (T). The rate at which
machine cycles occur is, therefore, one-eight of the clock frequency. The instruction time is 16T or two
machine cycles. All instructions require the same fetch/execute time.
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Instruction
Repertoire

Each COSMAC instruction is fetched during SO and executed during S1. The operations performed
during the execute cycle S1 are determined by the two hex digits contained in | and N. These operations
are divided into six general classes:

Register Operations — This group includes six instructions used to count and to move data between
internal COSMAC registers.

Memory Reference — Two instructions are provided to load or store a memory byte.
ALU Operations — This group contains fifteen instructions for performing arithmetic and logical
operations.

1/0 Byte Transfer — Eight instructions are provided to load memory from 1/0O control circuits, and
eight instructions to transfer data from memory to I/O control circuits.

Branching — Fourteen different conditional and unconditional branch instruction are provided.

Control — Six control instructions facilitate program interrupt, operand selection, or branch and link
operations.

J
Each instruction is designated by its two-digit hex code and by a name. A description of the operation is
provided using a symbolic notation. A two- or three-letter abbreviated name is also given. Examples are
shown in this section for most instructions. A summary of the instruction repertoire is given in Appendix A.
it should be noted that any unused machine codes, such as “CN’ “31", “72", 01", etc., are considered
illegal codes and should not be used by users. They are reserved for future use by RCA.

Register Operations
[1n [  “INCREMENT [ RN+ [ inc |

When I=1, the scratchpad register specified by the hex digit in N is incremented by 1. Note that
FFFF+1=0000.

A I 02 FFJ

A {o2 | el
X

i

RO) | 03 |74 RO) |03 | 7A

R | o1 | 32 I:\LUI_] RO [ o1 | 32 [ALUl_J

R(2) | - | - DF = — R(2) | - | = DF=—

rR@) [ o2 [Frfed [ o | as] R(3) | 03 | 00 e IDIAB]

vz

x| o|=z
s|v|ofw
NN

Fig. 7 — Example of instruction 1N — INCREMENT.
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2N DECREMENT R(N)—1 DEC
When =2, the register specified by N is decremented by 1. Note that 0000-1=FFFF.

Alm 32| la— N |1 A]o1|32J BE
P 0 P Y
X |2 X t2
]2 1 ]2
R(0) |03 | 78 R(0) | 03 78
R |01 | 22 feo P\Lu l - ] . R() | 01 | 31 fad Fw| _ |
R@ |- |- DF = — R |- |- | [oF=-
R | 03| 0o ro ] Aﬂ R(3) | 03 | oo [o |AB|

Fig. 8 — Example of instruction 2N — DECREMEN T.

[ an |  GETLOW R(N).0 D | cLo|
When [=8, the low-order byte of the register specified by N replaces the byte in the D register.

AlOl 31| N |1 AI01|31J N |t
P 1o P lo
AO 15 AO 1
| 8 1 8
ro) {03 | 7c o | o3 | 7¢
Ry o1 [ a1 fef A |- | ’ R o1 | 31 | Wul _J
R2) | - |- DF = — RI2 |- |- DF = —
r@ |03 | 00 [0 Tas] RG3) [ o3 | 00 EEL s
3 31
Fig. 9 — Example of instruction 8N — GET LOW.
[ on |  GETHIGH R(N).1>D GH!I |

When 1=9, the high-order byte of the register specified by N replaces the byte in the D register.

A|72 ool N |3 A[72[£] le—| N | 3
» o P lo
A1 X 2 Al X 2
| 9 | 9
0 | 03| 70 Ro) |03 | 70
Ry |01 ] 31 [aw ] - | ' R | 01 | 31 [ALUI —1
R2 | - | - DF = - Rzt | = | [ [PF=-
rR@) | 72| 00fe< [ D [a1] ra | 72 [ ofed [0 [72 Je
72 72

Fig. 10 — Example of instruction 9N — GET HIGH.
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AN

PUT LOW

D = R(N).0

PLqJ

When |=A, the byte contained in the D register replaces the low-order byte of the register specified by N.

T 0T T T

P lo P|o
X 2 X 2
T A 1A

R | 03 | 7E ro) | 03 | 7€

Ry | 01 | 3 [ALU | - ] ’ R(1) | 01 { 31 IALU] - ]

R{2) | 00 | 00 feDF=— R(2) | 00 | 72 |e{DF = —

R3) | 72| 00 [ D |72—|—-> R(3) | 72 | 00 [ D |7zj_.

72 } 72
Fig. 11 — Example of instruction AN — PUT LOW.
BN PUT HIGH D - R{(N).1 PHI

When I=B, the byte contained in the D register replaces the high-order byte of the register specified by N.

T R

P |o

X |2

' |8
o) |03 | 7F
Ry | 01 | 31 lALUl—]
R(2) | oo | 72 [*|DF=—
R@3). | 72| 00 ro | 66 |-

66

Memory Reference

1 D
P |o
x |2
R
Ro) |03 | 7F
’ Ry | 01 |31 IALUI—J
R(2) | 66 | 72 [*—DF = —
R(3) | 72 | 00 ro |66]—d
T 66

Fig. 12 — Example of instruction BN — PUT HIGH.

4N

LOAD ADVANCE

[ M(R(N)>D; RN+ [

LDA |

When =4, the external memory byte addressed by the contents of the register specified by N replaces

by byte in the D register. The original memory address contained in R{N) is incremented by 1. The
contents of memory are not changed.

Ao 1o e w1

Plo
ADD X {2

I 4
00 RO [ 01 | 00
00 R {00 |19 Je  faru] - |
00 R(2) | 00 { 17 DF = —
00 R@ | - | - [ o] e |

Fig.

A lool19| — N |1

P lo

x |2
ADD

B
00 g | o1 | 0o
00 R(1) | 01 | 1A je— IALUI—]
00 R2) |00 |17 DF = —
00 R3) |- |- [o [se ferq

56

13 — Example of instruction 4N — LOAD ADVANCE.
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5N STORE D = M(R(N)) STR
When I=5, the byte in D replaces the memory byte addressed by the contents of the register specified by
N.
A | oo A|00|17I e N | 2
P lo
x |2
ADD s
00 R(0) | O1 R(O) | 01 | ot
00 R(1) | 00 R(1) |00 | 1A ALUI - |
00 R(2) | 00 R(2) |00 | 17 & DF = —
00 R(3) | - rR@ | - | - D |56
56 56

Fig. 14 — Example of instruction 5N — STORE.

ALU Operations Using M(R(X))

In this group of instructions, the N digit of the instruction is a code specifying.a specific ALU operation.
The high-order bit of N is O. The X register must previously have been loaded (by an instruction, SET X,
described among the control instructions). In general, R(X) points at one operand, D is the other, and the
result replaces the latter in the D register.

[ Fo

| LoaD BY x

M(R(X)) > D

| Lox |

When I=F and N=0, the memory byte addressed by the contents of the register specified by X replaces
the byte in the D register. (This instruction does not increment the address as LOAD ADVANCE does.)

ADD

N lo

p

j*—1 X

CF

ALU| —

DF

Ll

a Joo [22] N O
P 0
la— X {2
ADD 1%
| F
00 | 30 | 01 RO) | oo | 70
00 |31 |00 R | oo | 33 [ALU]_]
00 (32 | 72 R(2) | go | 32 DF = —
00 | 33 | 57 R(3) | — — [ D 192 l‘—
‘ 92

Fig. 15 — Example of instruction FO — LOAD BY X.

F1

OR

M(R(X))vD—>D

or |

When [=F and N=1, the individual bits of the two 8-bit operands are combined according to the rules for
logical OR as follows:

M(R(X))| D OR({v)
0 0 0
0 1 1
1 0 1
1 1 1
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The byte in D is one operand. The memory byte addressed by R(X) is the second operand. The result byte
replaces the D operand. This instruction can be used to set individual bits.

A oo Jaa] Nk A Ioo|33l B E
Plo P lo
le— x |1 la— X |1
ADD
| F | F
rio) | 00 |71 00 Rio) |00 | 71
(1) | 00 [ 33 je lALUl w)]-— 00 R(1) | 00 [ 33 ja— [ALUI (V)I
Ri2} | o0 | 32 DF = — L 00 R(2) | 00 |32 DF = —
R@ [~ |- | D |92 ] 00 R | - |- p | o7
57
Fig. 16 — Example of instruction F1 — OR.
F2 AND M(R(X))e D—>D AND

When |=F and N=2, the individual bits of the two 8-bit operands are combined according to the rules for
logical AND as follows:

M(R(X))| D || AND()

0 0 0
0 1 0
1 0 0
1 1 1

The byte in D is one operand. The memory byte addressed by R(X) is the second operand. The result byte
replaces the D operand. This instruction can be used to test or mask individual bits.

AIOO 33| N2 A |00|33| N2
Pio P }0O
e x |1 e x |1
ADD .
1| F 1 F
Rio) | 00 | 71 00 RO} | 00 | 71
RN | 00 |33 je—m Pu.ul () }-— » 00 R(1) | 00 |33 i IALU‘ () I
R(2) Joo |32 DF=— f 00 R(2) oo |32 DF=—
R3) [ |- [o]e] 00 R | - |- [o ][]
57
Fig. 17 — Example of instruction F2 — AND.
F3 EXCLUSIVE-OR | MRxNeD-D | xor |

When 1=F and N=2, the individual bits of the two 8-bit operands are combined according to the rules for
logical EXCLUSIVE-OR as follows:

M(R(X) | D | | XOR(®)
0 0 0
0 1 1
1 0 1
1 1 0
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The D byte.and M(R(X)) are the two operands. The result byte replaces the D operand. This instruction can
be used to compare two bytes for equality since identical values will result in all zeros in D.

A oo 3] e N3
P lo P lo
ADD X ADD M i e
00 Ro) | 00 | 71 LIF 00 |30 |01 Ro) {00 |71 i
00 R {00 [33 je]  [ALuf(@ e 00 |31 |00 R oo |33 fe—  [au]i@)]
00 R2) | oo | 32 DF = — 00 |32 | 92 R2) |00 |32 DF = —
00 R |- |- D |92 00 |33 |57 RA) |- |- D |cs
} 57
Fig. 18 — Example of instruction F3 — EXCLUSIVE-OR.
|Fa] ADD M(R(X)) + D~ D; C > DF | ApD|

When 1=F and N=4, the two 8-bit operands are added together. The D byte and M(R(X)) are the two
single-byte operands. The 8-bit result of the binary addition replaces the D operand. The final state of DF
indicates whether or not carry occurred:

3A + 4B = 85 (DF=0)
3A + FO = 2A (DF=1)

DF can be subsequently tested with a branch instruction.

A Joo a3 ] N4 N4

PO P loO

ADD i ADD M g E
00 RO) |00 |71

00

I |F ! F
00 |30 |01 R(0) | 00 |71
R [oo [33ed  [acu]w | 00 | 31 |00 R o0 |33 fee  [ALU] |

R2) |00 |32 DF =— f 00 | 32 | 92 r2) | oo |32 DF=0
R |- |- [ D Igz | 00 |33 |87 R |- | - D | E9
{ 57

Fig. 19 — Example of instruction F4 — ADD.

00

00

[Fs| SUBTRACT D |  wmRrx)-D->D;Cc~DF | sp|

When |1=F and N=5, the byte in D is subtracted from the memory byte addressed by R(X). The 8-bit
result replaces the subtrahend in the D register. Subtraction is 2's complement: each bit of the subtrahend

is complemented and the resultant byte added to the minuend plus 1. The final carry of this operation is
stored in DF:

42 —OE = 42+F1+ =34 (DF = 1)
42 —42 = 42+8D+1=00 (DF = 1)
42 —77 = 42 +88+1 = CB (DF = 0)
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A final value of “0” in DF indicates that the subtrahend was larger than the minuend. In this case the value
in D is exactly 100 {hexadecimal) greater than the true (negative) difference.

A oo
ADDRESS| M
00130 |01 R{0) | 00
00|31 |oo R() { g0
00 | 32 | 92 R(2) | 00
00 | 33 | 57 R(3) | —

Fig. 20 — Example of instruction F5 — SUBTRACT D.

SUBTRACT M [ D-M(R(X)) - D; C—~ DF | sw |

[F7]
When |=F and N=7, the memory byte addressed by R(X) is subtracted from the byte in D. The result
byte replaces the minuend in D. This operation is identical to F5 with the operands reversed.

A foo 334] K E
Plo P lo
[+ x |1 — X |1
M
I | F | | F
R(0) | 00 | 71 00 | 30 | 01 R(O) Yoo | 71
R | oo | 33 fe  [ALU] ) Je oo |31 | o0 R [ oo |3 fed A o]
Rri2) | 00 |32 DF = — f 00 | 32 | 92 R® | 00 | 32 DE =1
rR3) | - | - { ooz | 00 |33 |57 R |- |- D |38
‘ 57

Fig. 21 — Example of instruction F7 — SUBTRACT M.

[F6] SHIFT RIGHT [SHIFTD RIGHT 1BIT; LSB ~ DF; 0 >MsB| SHR |

When 1=F and N=6, the 8 bits in D are shifted right one bit position. The original value of the low-order
D bit is placed in DF. The final value of the high-order D bit is always ““O”. In this instruction, unlike other
instructions in this group, M{R(X))} is not used. This instruction can be used to test successive bits of the
operand or to divide by 2.

al-1-1 N6 Al -] N e
P 0 P lo
X (1 X 11
T |F T F

RO) |~ |- R(0) -

R | = |- [ALU‘—)] ’ R(1) _ [ALU]— l

R2) [~ |- DF = — f R(2) — DF=1 ‘

R@ |- |- [o]rs] R(3) - [Dl79J

Fig. 22 — Example of instruction F6 — SHIFT RIGHT.
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ALU Operations Using M(R(P))

In this group of ALU instructions, the N digit has a 1 in the high-order bit position. The remaining three
bits of N are a code specifying the same ALU operation as instructions using M(R{X)), except when N=6.

In general, R(P) points to one of the operands, the byte in memory after the instruction byte, called the
immediate byte. The D register supplies the second operand, and then receives the result.

The use of immediate data is a useful way to avoid setting up special constant areas in memory and
pointers to them.
| Lot |

[F8| LOAD IMMEDIATE |
When 1=F and N=8, the memory byte immediately following the current instruction byte replaces the
byte in D. Because the current program counter represented by R(P) is incremented again by 1 during the

execution of this instruction, the instruction byte following the immediate byte placed in D will be fetched
next.

M(R(P)) > D; R(P)+1

This instruction is one of three which load D from memory. It uses R(P) as a pointer, while LDA uses
R(N) and LDX uses R(X). LDI and LDA each increment the pointer after use, but LDX does not.

A Jos [2s] N8 a o3| N |8
l— ¢ |0 e—{ P |0
X 12 ADD X2
1 F | F
R(0) | 03 | 28 e 03 R(0) | a3 | 20 |
RO |00 |71 lALUl _ ] ' 03 R | oo | 71 IALU[_ |
R(2) | o0 | 33 DF = — 03 R(2) { g0 | 33 DF = —
R [ - | - [ o] | 03 R |- | - b |92
92
Fig. 23 — Example of instruction F8 — LOAD IMMEDIATE,
[Fo ] OR IMMEDIATE M(R(P)) v D > D; R(P)+1 | orl |

When I=F and N=9, a logical OR operation is performed similar to F1. The D byte is one operand, and
the memory byte immediately following the F9 instruction is the second operand. The result goes to D.

A | 03 2A| N9 N lg
j*—q1 P 0 le—{ P 0
X 2
ADD X 2 ADD
| F | F
03 R(O) | 03 2A e 03
03 R(1) J 00 | 71 ALU ) 03 IALU I (v} |
03 R{2) } 00 {33 DF = — 03 DF = —
03 R@) [- |- EE3 03 (o [o7]

Fig. 24 — Example of instruction F9 — OR IMMEDIATE.

'
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[Fa] AND IMMEDIATE M(R(P)) - D> D; R(P)+1 [ Ani |

When I=F and N=A, a logical AND operation is performed similar to F2. The D byte is one operand, and
the memory byte immediately following the FA instruction is the second operand.

A|03 2cﬂ N | A A|03|2c| NijA
— P |0 [ P | O
ADD )|( |2: ADDRESS :( i
03 R(O) | 03 | 2C e 03|28 [ FA RO) | 03 | 20 |+
03 RM o0 |71 [Au] () | » 03 [ 2c | oF R | oo | 71 [au] o]
03 Ri2) [ oo |33 or=— | 03|20 | FB R(2) | 00 |33 DF =-
03 R [ - | - {ofor| 03 |26 [FO R |~ |~ [o | o7]
{ oF

Fig. 25 — Example of instruction FA — AND IMMEDIATE.

[FB| EXCLUSIVE-OR IMMEDIATE | M(R(P)) ® D - D; R(P)+1 | xri |

When 1=F and N=B, an EXCLUSIVE-OR operation similar to F3 is performed. The D byte is one
operand, and the memory byte immediately following the FB instruction is the second operand. This
instruction can be used to complement the D register when the immediate byte is “FF"".

NERES N8 N |8
e 17 |0 P lo
ADD X 2 X 2
03 RO) | 03 | 2€ f— LF FA LAF
03 R | oo {71 [ALuf(@® e 03 [ 2c | OF RO | oo | 71 ALuI(@J
03 re2) {oo [33] (or-- 03 | 20 | FB R2) |00 |33 DF = —
03 R@ | - |- [ o]o7 | 03 | 26 | FO RE |- | - D |F7
} FO
Fig. 26 — Example of instruction FB — EXCLUSIVE-OR IMMEDIATE.
[Fc] ADD IMMEDIATE M(R(P))+D ~ D; C > DF; R(P)+1 | ADI |

When |=F and N=C, the two operands are added as in F4. The D byte is one operand, and the memory
byte immediately following the FC instruction is the other operand.

A Jos [0 Nc c
le— P | O 0
x |2 2
ADD ADD
| F F
03 R(0) { 03 | 30 [* - 03 FC
03 Ry | oo | 71 [ALUI ) ]n— 03 |30 |80 R (oo | 71 ALU‘ ) J
03 Rz loo [33] |or-- L 03 |31 | FD R2 | oo |33 DF=-  §
03 RGO | _ | — [o]F | 03 |32 |92 R |- |- o |77
} 80

Fig. 27 — Example of instruction FC — ADD IMMEDIA TE.
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[FD] SUBTRACT D IMMEDIATE _|M(R(P))-D~D;C~>DF;R(P)+1- | sDI |

When I=F and N=D, the two operands are subtracted as in F5. The D byte is the subtrahend, and the
memory byte immediately following the FD instruction is the minuend.

3_;| A los |32] x| b
je—] P
ADD RESS all
03 32 (e 2F | FC RO |03 | 33 je— L F
03 7 30 | 80 R() o0 |71 [ALU] (=) |
03 33 31 | FD R2) | 00 |33 DF=1 .
03 - 32 |92 R3 |- | - I D I 1B—|
‘ 92
Fig. 28 — Example of instruction FD — SUBTRACT D IMMEDIATE.
[FF | SUBTRACT M IMMEDIATE [D-M(R(P)) > D; C - DF; R(P)+1 | smi |

When I=F and N=F, the two operands are subtracted as in F7. The D byte represents the minuend, and
the memory byte immediately following the FF instruction represents the subtrahend. (This instruction is
equivalent to FD with the operands reversed.)

3 I N F N|F
le— P O je— P |0
X 2
ADD ADD
| F
03 34 [ 03
03 71 03 IALUI = I
03 33 03 DF =1
a3 - 03 l ° |01 ]

Fig. 29 — Example of instruction FF — SUBTRACT M IMMEDIATE.

Input/OQutput Byte Transfer
[en] N=0-7 OuTPUT | M(R(X)) > BUS; R(X)+1 | out]|

When 1=6 and N=0,1,2,3,4,5,6, or 7, the memory byte addressed by R(X) is placed on the data bus. The
four bits of N are simultaneously sent from COSMAC to the 1/0 system, and a specific code is provided on

|—>7 7
A 100 33 I N7 A l 00 l 33 I N 7
Plo P lo
le— X | 2 le—| X | 2
ADDRESS| M
| 6 | 6
00 | 31 12 R(0) 03 36 R(0) | 03 36 e
00 ] 32|34 R(1) | oo | 71 lALUl —j R(1) {00 | 71 lALUI - 1
00 | 33 | 56 R(2) | 00 | 33 [*—]DF=- R(2) |00 | 34 [*— DF=—
00 [34 | 78 R |- | - [o]-] R@) |- |- [o]_ |
6
5 » 56

Fig. 30 — Example of instruction 6N (N=0-7) — OUTPUT.
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the COSMAC state code lines to indicate 1/0 (1=6). The mostsignificant bit of N is ““O"”, indicating “OUT-
PUT". The 1/O system recognizes these conditions, and reads the output byte from the bus. The 3 less
significant bits of N specify which of the 8 output instructions is being executed. R(X) is incremented by 1
so that successively executed output instructions can transfer bytes from successive memory locations.

If X is set to the same value as P, then the byte immediately following the output instruction is read out
as immediate data.

[sN] N=8-F INPUT BUS ~ M(R(X)) [ inp |

When 1=6 and N=8,9,A,B,C,D,E, or F, an input byte replaces the memory byte addressed by R(X). R(X) is
not modified. The four bits of N are simultaneously sent from COSMAC to the 1/O system, and the !/O
state code (I=6) is provided. The most significant bit of N is “1”, indicating “INPUT". The 1/O circuits
should gate an input byte onto the data bus during the execute cycle.. The 3 least significant bits of N
specify which of the 8 possible input instructions is being executed. R(X) is not modified.

Rl )

A loo |34 Na
PO
ADD X 2
00 R0) | 03 | 36 L8
00 R(1) |00 |71 [ALUI — I '
00 R(2) |'00 | 34 [@—DF=—
00 R | — |- l D J _J
27 27
Fig. 31 — Example of instruction 6N (N=8-F} — INPUT.
Branching

The current program counter, R(P), normally steps sequentially through a list of instructions, skipping
over immediate data bytes. When =3, a branch instruction is executed. The N code specifies which
condition is tested. If the test is satisfied, a branch is effected by changing R(P).

When a branch condition is satisfied, the byte immediately following the branch instruction replaces the
low-order byte of R(P). The next instruction byte will be fetched from the memory location specified by
the byte following the branch instruction. If the test condition is not satisfied, then execution continues
with the instruction following the immediate byte. This ability to branch to a new instruction sequence
(or back to the beginning of the same sequence to form a loop) is fundamental to stored-program computer
usefulness.

30 | UNCONDITIONAL BRANCH | M(R(P)) > R(P).0 [Br |

When I=3 and N=0, an unconditional branch operation is performed. The byte immediately following the
30" replaces R(P).0.

A |o1 23 | N o N o
fe—1 P {1 je—1 P 1
ADD X |2 DD X |2
01 ROy | — | - L] o1 |21 | Fe rRoy | - | - 10
o1 R | 01 | 23 e lALUI - —I 01 |22 {30 RY | o1 |82 [ -
01 R(2) | 00 |37 OF = — 01 |23 | 82 R(2) | 00 | 37 DF = —
o1 R@) |- [ - [ D |_ | 01 |24 | 2a R3 |- |-
3 2!

Fig. 32 — Example of instruction 30 — UNCONDITIONAL BRANCH.

27
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[32 | BRANCH IF D=00 M(R(P)) > R(P).0 IF D=00, OR R(P)+1{BZ |

When =3 and N=2, a conditional branch operation dependent on the value of D is performed. The byte
in D is examined and if it is equal to zero a branch operation is performed. If the value of D is not zero,
R(P) is incremented by 1. This increment .causes the branch address byte following the “*32"" instruction to
be skipped so that the next instruction in sequence is fetched and executed.

This instruction can be used following one of the ALU operations described earlier. For example, an
EXCLUSIVE-OR operation {F3 or FB) might be used to compare an input byte with a byte representing a
constant. A zero result byte in D would represent equality. The “32" instruction could then be used to
branch to a location in the program for handling this value of the input byte when D=00, or to proceed to
the next instruction in sequence if D#00, possibly to look for equality with other constants.

A 101 2:7] N2 A |o1 23] N |2
fe—{ P |1 le—{ P |1
ADDRESS| M )I( i ADD :( :
01121 ]| Fé R(O) | — - 01 R{(0) | — —
01 22 | 32 RV f o1 {23 feo  [ALu] - e ' 02 R | 01 |07 |a] |ALU| - |
o1 | 23|07 R | oo {37 DF =— 03 R oo |37 DF = —
0124 | 2c RR) |- | - [ o ]oo | 04 rR@ | - |- [o]oo]
97
CONDITION TRUE
A for 23] N2 A Jor J23] N |2
je— P 1 je— P 1
ADDRESS X 12 ADDRESS X
01|21 | F6 RO |- |- Ll 01|21 [ F6 RO) | — | - :
01|22 | 32 R(1) | 01 23 ] - 01 |22 |32 R(1? 01 24 |ja—i |ALU| - I
o1 |23 o7 R2) o0 |37 DF = — o1 |23 | o7 R | 00 | 37 DF=—
01 |2a |2 RO |- |- o] 01 |24 | 2¢ R |- | - fo]12]

CONDITION FALSE

Fig. 33 — Example of instruction 32 — BRANCH |F D=00 for both false and true conditions.

33 |  BRANCHIFDF M(R(P)) > R(P).0 IF DF=1, OR R(P)+1 | BoF |

When =3 and N=3, branching occurs if DF=1. Otherwise, the next instruction in sequence is performed.
Examples are not shown for the remainder of the branching instructions because they differ only in the
condition tested.

{34 | BRANCH IF EF1 | M(R(P)) > R(P).0 IF EF1=1, OR R(P)+1 [ B1 |
{35 | BRANCH IF EF2 | M(R(P)) > R(P).0 IF EF2=1, OR R(P)+1 [ B2 |
[36 | BRANCH IF EF3 [ M(R(P)) > R(P).0 IF EF3=1, OR R(P)+1 | B3 |
37 | BRANCH IF EF4 |  M(R(P)) > R(P).0 IF EF4 =1, OR R(P)+1 | B4 |

When 1=3 and N=4,5,6, or 7, branching occurs only when the corresponding external flag input (EF1,2,
3, or 4) is held in its “true” state by external circuits. These four branch instructions permit the micro-
processor to test the flags as required.
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[38 | SKiP [ R+ v | skp |
When 1=3 and N=8, the byte following the ‘*38" instruction is skipped‘.
r3A | BRANCH IF D#00 | M(R(P)) = R(P).0 IF D#00, OR R(P)+1 | BNZJ

When 1=3 and N=A, a branch is performed only if the byte in D does not equal zero; If it does, the next
instruction in sequence is executed.

Ao [23] N a NERE) N[ A
je— P |1 je— P |1
ADD x |2 ADDRESS | M o
01 Ro) | - | - Ll o1 |21 | Fe ROV [ - | - i3
01 R [o1 |23 fed  [Aru] - | o1 | 22 | 3a R | 01 | 97 jer] IXLUI = I
01 R2) (o0 |37] |pF=- o1 |23 |97 R2 loo |a7| [oF--
o1 RGN - | - | o]z | 01 |24 | 2¢ R |- |- [o]12]
t P |

Fig. 34 — Example of instruction 3A — BRANCH IF D#00.

38 BRANCH IF NO DF M(R(P)) = R(P).0 IF DF =0, OR R(P)+1 BNF

When 1=3 and N=B, a branch occurs only if DF=0. Otherwise, the next instruction in sequence is fetched
and executed.

[3c | BRANCH IFNO EF1 | M(R(P)) > R(P).0 IF EF1=0, OR R(P)+1 | ent1 |
| 3D | BRANCH IF NOEF2 [ M(R(P)) > R(P).0 IF EF2=0, OR R(P)+1 | Bn2 |
[ 38 | BRANCH IFNOEF2 | M(R(P)) > R(P).0 IF EF3=0, OR R(P)+1 [ BN3 |
[ 3F | BRANCH IFNOEF4 | M(R(P)) = R(P).0 IF EF4 =0, OR R(P)+1 [ BNa |

When 1=3 and N=C,D,E, or F, a branch occurs only when the corresponding external flag input (EF1,2,3,
or 4) is in its “0" state.

Because only the low-order byte of R{P) can be modified by a branch instruction, the range of memory
locations that can be branched to is limited. Since only the low-order 8 bits can be modified, branching is
limited to 28 or 256 bytes. Each 256-byte memory segment is called a page. Methods for branching to any
location in memory are described in the section on Machine Code Programming.

The special case of a branch instruction and its immediate byte occupying the last two bytes in a page is
treated as follows: If a branch takes place, R{P).1 is not changed —— the branch stays on the same page. If a
branch does not take place, execution continues at the first (Oth) byte of the next page. A branch in-
struction on the last byte of a page always leads into the next page, either by branch or by increment. In
other words, the address of the immediate byte determines the page to which a branch takes place.

Control
| 00 | IDLE [ WAIT FOR INTERRUPT/DMA-IN/DMA-OUT | IDL |

When 1=0 and N=0, the microprocessor repeats execute (S1) cycles until an interrupt, DMA-in, or DMA-
out is activated, at which time the IDLE instruction is terminated. During IDLE, the microprocessor
continues to put out the two timing pulses for 1/O synchronization.
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[on | seTe NP | ser |

When 1=D, the digit contained in N replaces the digit in P. This operation is used to specify which scratch-
pad register is to be used as the program counter. This instruction causes a jump to the instruction sequence
beginning at M(R(N)). It facilitates “branch and link"’ functions, subroutine nesting, and long branches to
any location in memory. (These topies are discussed in the section on Machine Code Programming.)

mEE

N |8 N 8 [ ™
e 8 P |g jed

X 12 X |2

i |o i | b
RO) | - | -
R o1 | 23 [ALU I _j k\LuI _ —l
r2) |00 |37 DF=— OF -
w11 | G ]

Fig. 35 — Example of instruction DN — SET P.
[En | seTx | nNox | sex |

When I=E, the N digit replaces the digit in X. This instruction is used to designate R(X) for ALU and
1/0 byte transfer operations.

—a]-J-]

RO) | . |_—

R(1) ot |23
R(2) 1 oo | 37
R | - | =

Fig. 36 — Example of instruction EN — SET X.

Interrupt Handling

The special interrupt servicing instructions can best be understood by examining COSMAC’s response to
an interrupt. When an interrupt occurs, it is necessary to save the current configuration of the machine by
storing the values of X and P, and to set X and P to new values for the interrupt service program. The
interrupt forces X and P to be automatically transferred into a temporary register (T), and forces a value of
“1" into P and 2" into X. In addition, further interrupts are disabled by resetting the interrupt enable
flip-flop (IE) to “0". Also, a specific code is provided on the COSMAC state code lines. Details of the
interrupt servicing are discussed in the section on 1/0 Interface.
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[— ] INTERRUPTACTION | XP->T;1->P;2->X;0~IE -]
anslinal ol saal oo
P |3 ™ P 1 e
X 4 | X 2 e
R{0} - — ! - R(0) - - ' d ‘@ ‘
R(H |00 | 56 [;Lu l — | R() |00 |56 [ALul _ |
R2) |01 |24 DF = - R |01 |24 DF-—
RE) |02 | 3C [o]-] R3) |02 |3c [o -]
IE=1 IE=0
Fig. 37 — Example of instruction —— — INTERRUPT ACT/ION.
[78 |  sAve [ ToMERX) | sav |

When =7 and N=8, a SAVE operation is performed. This operation stores the byte contained in the T
register at the memory location addressed by R(X). Subsequent execution of a RETURN or DISABLE
instruction can then replace the original X and P values to resume (or return to) normal program execution.

|70 |  RETURN M(R(X)) > X, P; R(X)+1; 1~ IE | reT |

When 1=7 and N=0, a RETURN operation is performed. The digits in X and P are replaced by the

memory byte addressed by R(X), and R(X) is incremented by 1. The 1-bit Interrupt Enable (IE) latch
is set.

NERES N o A lm‘zsl N o
P {4 P |3 e
le— X | 2 X {4 jo]
ADD:
| 7 i 7
01 R{O)} | — - RO} | — _
o1 R(1) | 00 |56 [ALUI;‘ Ri1) | o | 56 ALu] - I
01 R(2) | 01 | 23 |* pp-_ R(2) [ 01 |24 [*] DF =—
o1 R3) foz2 | 3c [o]-] R(3t {02 | 3¢ [o]-]
43
Fig. 38 — Example of instruction 70 — RETURN.
[71 |  DisaBLE M(R(X)) = X, P; R(X)+1; O — IE | ois ]

When =7 and N=1, an instruction similar to RETURN is executed, except that in this case IE is reset.
While |E=0, the interrupt line is ignored by the processor.

Either the RETURN or DISABLE instruction can be used to set or reset |E, respectively, as explained
in the section on Machine Code Programming.

Instruction Utilization

The following table shows the use of some of the preceding instructions to form a program. This program

inputs two bytes from different sources, compares them, and outputs the larger. It then continues to repeat
the process.
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The first four instructions (at locations 0001,3,4, and 5) set up R{2) as a pointer to address 0000 for
1/0 and for doing arithmetic. The reader unfamiliar with computers should trace through the program with
specific numbers, noting the successive contents of M(0000), D, and R(3).0.

COMMENTS

M ADDRESS | MBYTE | oPERATION
1000 00
0001 F8 007D }
0002 00
0003 A2 D+R(2).0 }
0004 B2 D*R(2).1
0005 £2 2
0006 68 INPUT 0
0007 FO M(R(2))>D
0008 69 INPUT 1
0009 A3 D>R(3).0
000A F7 D-M>D; C>DF
0008 38 BNF }
000C 3
000D 83 R(3).0-D
000E 52 D>M(R(2))
000F 60 OUTPUT0; R(2)+1
0010 30 BR
0011 01

Data Storage.
Execution starts at 0001.
Immediate data.

Sets R(2) = 0000.

Prepare to input.

Read 1st input data to M(R(2}) = M (0000).
Transfer it to D.

Read 2nd input data to M{R(2)) = M (0000).
Save first data.

Subtract; set DF to next step.

Branch to 000F if DF = 0,

ie. if 2nd input greater than

Ist input, otherwise:

Retrieve first data.

Store it at M (0000).

Qutput larger value; M{R(2})>1/0.

Go back to beginning: 0001.

Immediate address byte.

Fig. 39 — Example of program for inputting two bytes, compared them,

and outputting the larger.

As a more practical and complicated example, the following program segment multiplies two bytes,
The multiplicand is assumed to be in memory as addressed by register R(3). The multiplier is in R{5).0, the
byte to be added is in R(4).1, and the product will be placed in R{4).1 and R(4).0 — two bytes.

This program multiplies by shifting the multiplier and product right eight times. Aiternatives are to shift
the multiplier right and the multiplicand left (by adding it to itself), or the multiplier left and the muktipli-

cand right, or the multiplier and the product both left.

.

COMMENTS

MADDRESS | MBYTE | oOPERATION
0100 E3 X
0101 F8
0102 80 80
0103 A4 D>R{4).0
0104 85 R(51.0>D
0105 F6 0/2:D
0106 A5 D*R(5).0
0107 94 R(4).1>D
o108 38 BNF
0109 op }

Prepare for instruction at 010A.
The bit in 80 (10000000) will be shifted
down, using R(4).0 as a counter.

Fetch muitiplier,

shift it,

and put it back.

Fetch partial result.

Hf bit shifted into DF is 0, branch to
location 010D; otherwise:

(cont’d on next page)



COSMAC Microprocessor

(cont’'d)

M ADDRESS MBYTE OPERATION COMMENTS
010A F4 D+M(R(3)) Add in multiplicand .
0108 33 BDF If carry in DF, branch to
010C 10 } loc 0110; otherwise:
010D F6 D/2 Shift the result right ,
010E 30 BR and go to 0113 to shift the rest
010F 13 } of result.
0110 F6 D/2 Shift result right .
0111 F9 D OR immed OR in high bit for carry
0112 80 (data) } from instruction at 010A (NOTE).
0113 B4 D>RI4).1 Storeresuft back .
0114 84 R(4).0-D Fetch low byte of resuit .
0115 33 BDF Delayed branch on shift in
0116 1A } 010D or 0110,10 011A .
0117 F6 D/2 Shift low byte,
0118 30 BR and branch to 001D
0119 1D } to finish shift .
011A F6 D/2 Shift low byte,
011B F9 D OR immed and OR in high bit
011C 80 (data)} } from shift of 010D or 0110 (NOTE).
011D A4 D>R(4).0 Put low byte back .
Ot11E 3B BNF Branch back (*“’loop”) if the original
011F 04 } 80 hasn‘t shifted thru yet .
0120 - Product is now ready. Continue to

rest of program.

NOTE: The SHIFT RIGHT instruction will not shift the DF bit into the highest bit of D. These operations
essentially restore, if DF=1, a ““1" bit into the highest bit of D after a SHIFT RIGHT.

Fig. 40 — Example of program for multiplying two bytes and adding the
result to a third byte.
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Memory and Control
Interface

The reader will find that Appendices B, C, and D are helpful while reading this section. Note that all
signal lines except Memory Write (MWR) are made active by holding them low, e.g., when the memory is to
be read, MREAD goes low (consistent with T2L bus conventions).

Memory Interface and Timing

The use of the COSMAC memory interface lines is best described by a specific example. Fig. 41 shows
the attachment of a static 1024-byte RAM. The 1024-byte read-write memory comprises eight 1024-bit
TA6780 RAM chips. These static single-power-supply chips are easy to use.

MAO-7 MA O-7
S S S LS L LS s LSS LSS YA A
77 7 7 777777777077 7777771
-~
ADDRESS 1~
0-9 i MA O-1 pd
X
//
CD4013 TPA
MEMORY DUAL LATCH
1024 BYTES
TA6780
STATIC RAM
CHIPS
COSMAC
_ L e
WE *
8- DATA
IN B/I';S _
77 CSa—
Vee
P M READ
7 -
L -1
1
- 3-STATE-] L 8 BUS
ouTPuTS 7 g PULL UP
1 5 RESISTORS
1T A é (22K)
e 1 DATA BUS BUSO-7
VAR, VB B A A VRSN A A A WA A A /L
7 7 7 7 7 7 7 7 7 7 7 7 7 777 77777 7 7 7 7 7 7 7 77

92C5-26574

Fig. 41 — Attachment of a static 1024-bit Random-Access-Memory (RAM)
to the COSMAC miC(oprocessor.
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Ten memory address bits are required to select 1 out of 1024 memory byte locations. The high-order
byte (A.1) of a 16-bit COSMAC memory address appears on the memory address lines MAO-7 first. The
two least-significant bits are strobed into the 2-bit address latch by timing pulse A (TPA). Fig. 42 shows the

timing.
= }e—T(NOTEI)
CLOCK R A ANy Ny NNy Wy N N W N N W e W NN R NN N AT Ra Y
loltl2[3]4]s|e|7 o] 1]2|3|4]s|e|7]o]|1]2|3]4|5s|7]
_ | | |
TPA il T = i ]I i
TPB | 1J L
I.STJ
e O.5T
»| [«0.5T
MEMORY TIMING: > T
ADDRESS (MAO TO MA7) A al] ro—>1 ] Al e—ao—=1 7 Tai | — o .
R | |
M READ I y —
MWR (NOTE 2) ! 1
MEMORY OUTPUT INN% f——o0FF ‘N, ¥
J L_\VALID BYTE NOTE 3 “\VALID BYTE
ALLOWABLE MEMORY ACCESS TIME < 3.5T—ts
(ts=SETTLING TIME) S2CM-26472
NOTES:

1. MINIMUM T DETERMINED BY Vpp——NO MAXIMUM T
2. MEMORY WRITE PULSE WIDTH (MWR) ~ 15T

3. MEMORY OUTPUT “OFF"" INDICATES HIGH-IMPEDANCE CONDITION,
4. SHADING INDICATES “DON'T CARE” OR INTERNAL DELAYS DEPENDING ON
Vpp AND THE CLOCK SPEED.

Fig. 42 — Memory read/write timing.

The low-order byte (A.0) of a 16-bit COSMAC memory address appears on the MAO-7 lines after the
high-order bits have been strobed into the address latch. Latching all eight A.1 bits would permit memory
expansion to 65,536 bytes. Chip select decoding would have to be added to the latch output for memory
expansion. The MAO-7 lines may also require buffer circuits to reduce the load on them to achieve high
speed.

The state of the MWR and MREAD lines determine whether a byte is to be read from or written into the
addressed memory location. COSMAC controls the destination of the memory output byte when it appears
on the data bus. It may be strobed into an internal COSMAC register or an external |/O register.

A high MREAD line forces a high-impedance state at the output of the memory. COSMAC or 1/Q cir-
cuits can then place a byte to be stored in memory on the bus. A positive-going MWR pulse will cause the
data byte to be written into the addressed memory location.

When a data bit is true (““1"), the corresponding bus line is low; when data is false (“0"), the corre-
sponding line is high. Eight bus puli-up resistors should be provided to place the bus in a known state when
it is not being driven.

Other standard RAM types are readily accommodated by the COSMAC interface lines. Access time
must be consistent with clock frequency: e.g., @ 2-MHz clock will require a memory with a maximum access
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time of 1 microsecond. The time required by the ALU and internal gating is specified in COSMAC data
sheets.

If a memory does not have a 3-state high-impedance output, MREAD is useful for driving memory-bus
separator gates, otherwise it is used to control 3-state outputs from the addressed memory. A low on
MREAD indicates a read cycle; the low MREAD line enables the memory-output-bus gates during the read
cycle (see Appendix D, COSMAC Timing).

For various memory systems, MREAD signal and the MWR pulse polarity and width may require modi-
fication by external circuitry. Segments of ROM can be attached in the same manner, omitting the write
controls. Dynamic RAM’s can be used with appropriate refresh circuits. Since COSMAC circuitry is static,
the clock may be stopped and restarted for asynchronous memory operation if required.

Control Interfaces: Starting, Stopping, and Loading

COSMAC requires an external single-phase clock. Each machine cycle consists of eight clock pulses.
A 2-MHz clock frequency would yield a 4-microsecond machine cycle and result in an operating speed of
125,000 instructions per second.

During normal operation, the COSMAC CLEAR line must be held high. A momentary low on this line
places COSMAC in an IDLE state by forcing an IDLE instruction with P=0, R(0)=0000, and |E=1.

The COSMAC LOAD line should also be held high during normal operation. Following CLEAR, alow
LOAD line permits input bytes to be sequentially loaded into memory beginning at M (0000). Input bytes
can be supplied from a keyboard, tape reader, etc. This feature permits direct program loading without the
use of external ROM’s or PROM'’s.

Fig. 43 illustrates one method of using the CLEAR, CLOCK, and LOAD lines to control a COSMAC
system. All logic consists of standard 4000-series CMOS circuits. A free-running Pierce crystal oscillator
using a single 4007 chip provides a suitable gated clock. A high CLEAR on the control lead of the NAND
gate formed from the 4007 gates the oscillator output to the COSMAC CPU. When CLEAR is low, CLOCK
remains high. COSMAC design permits an asynchronous relationship between the free-running clock and
switch closures: a short first clock pulse will not affect COSMAC operation.

The two toggle switches control the operation of this system. When both switches are off, as shown in
Fig. 43, the CLEAR line is held low and the CLOCK line is held high. This CLEAR signal resets COSMAC
and can also be used to initialize /O circuits.

If the LOAD switch is tuined on, the CLEAR line will go high, the clock will be started, and the LOAD
line will be held low. COSMAC will remain in an IDLE state until a low occurs on the INTERRUPT, DMA-
iN, or DMA-OUT line. Input circuits (not shown) can then activate DMA-IN to load bytes into memory.
The low LOAD line causes COSMAC to return to the IDLE state after each input byte is loaded.

Turning off the LOAD switch after a program has been loaded turns off the clock, holds the LOAD
line high, and puts the CLEAR line back to a low state. This sequence resets COSMAC once again, putting
it in an |DLE state.
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_“Dr DMA-OUT
T TPA
NOTE : FF SET/ RESET= LOW 2 400! { scl
v 4011
—V\WW\—CO
RUN « s R 4001
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Fig. 43 — Two-switch COSMAC control.

Turning on the RUN switch starts the clock and puts a high on the CLEAR line. Fig. 44 shows the
sequence of events that initiates program execution when the RUN switch is turned on. The clock
causes a TPA signal each machine cycle. The low on the DMA-OUT line is detected by COSMAC. It
responds by performing a DMA cycle (S2), which is described in the section on 1/0 interface. A low on the
state code line (SCI) indicates that COSMAC is executing the DMA cycle (or interrupt cycle, which would
not normally occur at this time) and causes the flip-flop holding the DMA-OUT line low to be reset. In this
case, the DMA cycle does nothing more than take COSMAC out of the IDLE state. Since the LOAD line is
high, the cycle immediately following the DMA cycle will be a normal instruction fetch operation (SO).

RUN SWITCH OFF ON
CLEAR (LOW) __I

TPA J S L
s i ¥| —
DMA-OUT N J
I<—IDLE CYCLE (sn\—"e- DMA-OUT CYCLE (Sz)ﬁl
92CM-26471

Fig. 44 — START timing.
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The previous low on the CLEAR line has set P=0 and R{(0)=0000. The DMA cycle (S2) caused R(O) to
be incremented by 1. The first instruction will, therefore, be fetched from M{0001) and not M(0000). Note
that program execution normally begins at M{0001) with R(O) as the program counter. After initiation,
program execution continues until an IDLE instruction accurs or the RUN switch is turned off.

The above example represents one method of initiating system operation. The load operation could be
eliminated by having a program permanently stored in ROM. Separate CLEAR and RUN momentary con-
tact switches could be used. Program execution could also be initiated by another computer instead of by
manual switches. Other oscillators could be used for clock generation.
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I/0 Interface

Programmed 1/0

The following paragraphs indicate a few of the ways in which 1/O data transfer can be accomplished
under program control. It should be noted that the MREAD signal, discussed in the section on Memory and
Control Interface. can also be used in conjunction with S1+(I1=6) to transfer data from the bus into an 1/O

device or to gate data from an /O device onto the bus.

Data output. When 1=6 and N=0,1,2,3,4,5,6, or 7, the memory byte addressed by R(X) is placed on the
bus. The SCO line goes low and the SCI line goes high to indicate that an 1/O instruction cycle is performed.
The M(R(X)) byte will appear on the data bus before the timing pulse B ('T'I_’E) occurs, and will remain on
the bus until after the TPB line returns to its high state. Fig. 45 shows how the output instruction might be

used to set a byte into a two-hex-digit output display device.

N3 (HIGH=0UTPUT DURING INPUT/OUTPUT EXECUTION)

o 4049
— ™ 4012 STROBE BUS — DISPLAY
5C0 < U
1
COSMAC |TpB D‘IO;S) I |
| I DI DO
. 5082- 5082-
NOTE: SCO=H; SCI=L
; 734 7340
INDICATES AN I=6 340 3
EXECUTION CYCLE
A HIGH- ORDER b Low-0rDER
1 piGIiT 7 - DiGIT
A L
4049 “ b
RUS O—7 4
M-, BUSO-7 | //A_JI>C v, /L L/
77T 7777777 7T 777 7
92CS-26474

Fig. 45 — Simple output display logic.

Each HP5082-7340 display chip contains a 4-bit register, decoder, and hex LED display. A four-input
gate causes the byte from memory to be strobed into the 2-digit hex display during TPB when SCO
and SCI indicate that an input/output instruction is being executed. The N_3-gate input permits the display
to be set only when the high-order bit of the N register equals “0’’. Note that the four N-register bit lines
NO-3 are high when the corresponding internal N-register bits equal 0", In Fig. 45, any of the 8 output
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instructions can be used to transfer the M{(R{X)) byte to the output display. This logic is suitable if the hex
display is the only output device in the system.

If more than one output device is required, NO through N2 can be decoded to specify up to eight
Nifferent output devices or channels. The N3 gate input of Fig. 45 might be replaced by a decoded- N=1
signal. This change would permit the display to be set when I=6 and N=1 (a 61 instruction). Instructions
60, 62, 63, 64, 65, 66, and 67 could then designate other devices or channels to receive the output byte.

Data input. The simplest form of input to the COSMAC microprocessor utilizes one of the four external
flag lines (EF1, EF2, EF3, or EF4). A low on a flag line places it in its ““true’” state. The BRANCH in-
structions 34, 35, 36, 37, 3C, 3D, 3E, and 3F allow programs to determine the states of these flag lines.
Fig. 46 illustrates one method of using a flag line (EFT in this case) as a binary input.

ON
£F1 o* NOTE:FF SET/RESET = LOW
COSMAC EF1 Q s
0=0) R - 0‘01
4011
vee

92Cs-26478

Fig. 46 — Use of a flag time (EF1) as an input.

Turning on the switch sets EFT low. Turning off the switch sets EF1 high. (The flip-flop eliminates
switch bounce.) A COSMAC program can be written to-simulate a free-running two-digit decimal counter.
Each two-digit count can be placed in the output display of Fig. 45. The switch in Fig. 46 will start and
stop the counter.

If the switch is in the “ON’’ position, counting proceeds (00-99). When it is turned off, counting stops
with the current value of the count displayed. Another closure will initiate counting again, started at the
value displayed. A portion of a possible “‘counter program’’ is shown below.

M address M byte operation comments

[}
| ' Initialize registers

| | and display
| | i
0018 3C BN1 Loop here until
| 18 | switch “ON"’
| | : i.e., EF1 goes low.
| 1 ,
| l Code to perform
| : C?Unt function
]
I 61 Olutput 1 Output the counter byte to display.
: 30 BR Branch to M(0018).
18

The switch of Fig. 46 might be replaced by a Te|etype® output relay. The opening and closing of this
relay contact represent the bit-serial Teletype character code. A COSMAC program could interpret the
sequential states of the EF1 line to provide an extremely simple bit-serial interface.
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Fig. 47 illustrates the use of the INPUT instruction in conjunction with a flag line. Eight input switches
are first set to represent a desired input byte (1=low, 0=high). Momentarily pressing the ENTER switch then
places a low on the EF1 line. The program monitors the status of this line. When a low is detected, the
program branches to an INPUT instruction (1=6 and N3=1).

Vee
o 4069 O—_O'\c ) .

"o
77

nln VA
8 INPUT ti
SCH SWITCHES
— 2
== 4069 4073 8
SCO ‘>c . J "SW > BUS" CONTROL (ON=H) l_:] 4066

COSMAC
ENTER

* Vee

Q S —0 i

R P

4013 4013
g

BUS O-7 / / s s,y

M ve 7 7 -

92CM-26479

Fig. 47 — Simple byte input logic.

SCO in a low state and SC1ina high state indicate that an input/output byte transfer cycle is being
performed. During this cycle the data byte is stored in the memory location addressed by R(X). The 3-input
gate in Fig. 47 transfers the state of the eight input switches to the bus through eight 4066 transmission
gates. The EF1 line is forced high at TPA to assure that only one byte is entered per ENTER switch depres-
sion. This logic is suitable only if the single set of eight switches is the only input device in the system.

If more than one input device is required, NO through N2 can be decoded to specify up to eight
different input devices. The N3 signal can be replaced by a decoded N=9 signal. This arrangement would
permit the byte to be entered when =6 and N=9 {a 69 instruction). Instructions 68, 6A, 6B, 6C, 6D, 6E,
and 6F could then designate other devices or channels to enter data.

The eight input switches might be replaced by the byte output of a paper-tape reader, keyboard, or other
type of input device. The ENTER switch would then be replaced by a strobing signal generated by the
input device. The program must sample the flag line and execute input byte transfer instructions at speeds
consistent with the input byte transfer rate. Output devices can also utilize flag lines to signal COSMAC
that an output byte transfer is required.

The preceding examples have illustrated the use of the four flag lines, the 4-bit N code, the two state
code lines, the two timing lines, and the data bus for simple 1/0 operations. These 1/0 interface lines can be
used to implement more sophisticated 1/O systems. Fig. 48 shows one such system.

The N digit provided by the input/output instruction (on NO-3) is decoded to provide 16 separate
control signals. One of these signals (N=0 in this example) strobes an output byte into an 8-bit 1/0 device
select register. The outputs of this register are decoded to provide selection signals for up to 256 individual
1/0 devices.

A 60 instruction is executed to place an 8-bit device selection code in the 1/0 device select register. Subse-
quent execution of a 61 instruction will send an 8-bit control code to the selected device or channel. Control
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/—> N=F: STORE DATA BYTE FROM
SELECTED DEVICE

— N=E: STORE STATUS BYTE FROM
SELECTED DEVICE
NO-3 47016 :
DECODE
——N=2: TRANSFER DATA BYTE TO [—SELECT DEVICE No.256
SELECTED DEVICE
——>N=1:TRANFER CONTROL BYTE TO —— SELECT DEVICE No.255
SELECTED DEVICE
COSMAC :
N=0:SELECT DEVICE .

——SELECT DEVICE No.2

STROBE

8-BIT I/0
DEVICE SELECT
REGISTER

——>~SELECT DEVICE No|
TPB {>& \

L L. L L /L L L L [ L/
7 7 77

I/0 DEVICES
92CM-26475

Fig. 48 — Two-level 1/0 system.

codes can be used to start or stop electromechanical devices, set up specific modes of operations, etc. When
the 8-bit 1/0 device select register specifies an output device, execution of a 62 instruction will cause an
output data byte transfer to selected device. After an input device is selected, a 6F instruction could be
executed to store an input byte in memory. Execution of a 6E instruction is used to obtain a status code
byte from a selected device. Instructions 63, 64, 65, 66, 67, 68, 6A, 6B, 6C, and 6D could be used to con-
trol other system functions, either directly (ignoring device selection) or under control of the device select
register.

A flag line can be shared between several 1/0 devices by treating it as a bus. Individual device conditions
would be gated to the flag bus only when that device is selected.

The above examples indicate only a few of the ways in which 1/O instructions can be implemented. The
1/0 interface line can be used in a great variety of ways, limited only by the ingenuity of the system designer.

DMA Operation

The 1/0 exampies described above require that a program periodically sample 1/0 device status. These
techniques also require several instruction executions for each I/0 byte transfer. In many cases it is desirable
to have 1/O byte transfers occur without burdening the program or to transfer data at higher rates than
possible with programmed 1/0. A built-in direct-memory-access (DMA) facility permits high-speed 1/0 byte
transfer operations independent of normal program execution.

During DMA operation, R{O} is used as the memory address register and should not be used for other
purposes. Two lines, DMA-IN and DMA-QUT, are used to request DMA byte transfer to and from the
memory. Also, a specific code is provided on the state code lines {SCO, SC1) to indicate a DMA cycle (S2).

[— ] DMA-IN ACTION [ BUS - M(R(0)); R(0)+1 | — |

[— ] DMA-OUT ACTION __| M(R(O)) > BUS; R(O)+1 | — |
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DMA-IN. Fig. 49 illustrates the manner in which a DMA ih’put mode might be implemented. TPA is used
to sample the state code to avoid the state transition times (after TPB but before TPA). The input device may
be the same devices discussed in conjunction with Fig. 48. In the DMA case, however, each ENTER pulse
will put a low on the DMA-IN line instead of on a flag line.

4069
sCI
s—'-Do——N N\ (ON=H)
5C0 4081 ’
IPA INPUT
TP 4081 BYTE n
COSMAC U ;
4069 2-4066 g
Il X
g
- -
DMA-IN 5 R e J Lenterpuse
-l I" Dje——O Vce T
4013 Ps
L~
R L
Mtz p gy sy g BUSOT /) )y A, /L / A,
77 / 7 77/ /7 7 7 7 77 77 77 7
92CS-26480

Fig. 49 — DMA input logic.

A low DMA-IN line will automatically modify the normal fetch-execute sequences. If the DMA-IN
line goes low during an instruction fetch cycle (SO), then the normally following execute cycle (S1) will
still be performed. Following this execute cycle (S1), a special DMA cycle (S2) will be performed. If the
DMA-IN line goes low during an instruction execute cycle (S1), then the DMA cycle (S2) will immediately
follow. If the DMA-IN line is reset to its high state during the DMA gycle (S2) then the deferred next
instruction fetch cycle (SO) will be performed following the S2 cycle, as shown below:

DMA-IN _———]____I

CYCLES/STATES |SO [ S1]SO| S1]S2}SO|S1}|SO S1J

if the DMA-IN line remains low, S2 cycles will be berformed until the DMA-IN line goes high, as shown
betow. The DMA mode permits a.maximum 1/0 byte transfer rate of one byte per machine cycle.

DMA-IN | I

CYCLES/STATES | so| s1] so [ s1] s2[s2[s2[so]st]

An S2 cycle is indicated by a high SCO line and a fow SC1 line. This condition is used to place a DMA
input byte onto the bus, as shown in Fig. 49. The S2 cycle stores the input byte in memory at the location
addressed by R(0). R(O) is then incremented by 1 so that subsequent S2 cycles will store input bytes in
sequential memory locations. S2 cycles do not alter the sequence of program execution. The program will,
however, be slowed down by the S2 cycles that are “stolen”’. The concurrent program must, of course,
properly use R(O) and memory areas in which input bytes are being stored. It may examine R{O) and the
memory area involved to observe the course of the data transfer. The program must also set R(O) to the ad-
dress of the desired first input byte location in memory before permitting a DMA input operation.

Program Load Facility. The DMA-IN feature, in conjunction with the LOAD and CLEAR signals,
provides a built-in program load mechanism.. A low on the CLEAR line resets R(O) to 0000. If the LOAD
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line is.then held low, the DMA-In logic of Fig. 49 can be used to load a program into memory. Bytes would

be stored in sequential memory locations beginning at M(0000). COSMAC will idle between DMA entries,
as explained in the section on Memory and Control Interface.

DMA-OUT. A low on the DMA-OUT line causes S2 cycles to occur in a similar manner as a low on the
DMA-IN line. The S2 cycle caused by a low on the DMA-OUT line places the memory byte addressed by
R(O} on the bus and increments R(O) by 1. DMA output bytes can be strobed into an output device by

TPB, as shown in Fig. 50. The program must set R(O) to the address of the first output byte of the desired
memory sequence before the DMA transfer requests occur.

T_P—B>Oi>9n

sl >
o "
— 408! 408 JH="BUS - OUT.

PA
COSMAC T 408I
4069 _rL
OUTPUT BYTE REQUEST
DMA-QUT 3 R Ce——-() J—L
1T Dle—COVce
A 4013
//
-
M Bus 0-7 / / [ /4y 4 o OUTPUT
/ VA Va4 4 DEVICE
92CM-26481

Fig. 50 — DMA output logic.

Interrupt Control

The interrupt mechanism permits an external signal to interrupt program execution and transfer control
to a program designed to handle the interrupt condition. This function is useful for responding to system
alarm conditions, initializing the DMA memory pointer, or, in general, responding to real-time events less

urgent than those handled by DMA but more urgent than those which can be handled by sensing external
flags.

A low on the INTERRUPT line causes an interrupt response cycle (S3) to occur following the next S1

cycle, provided the IE flip-flop is set. Execution of an S3 cycle is indicated by a low on both the SCO and
and SC1 lines, as shown below:

INTERRUPT

IE L

CYCLES/STATES |so| St | 50| st [ s3] so [ st | so [ s1]
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Fig. 51 shows a typical interrupt circuit. The flip-flop is reset during the S3 cycle, but could also be reset
by an output instruction.

| | REQUEST

SCO I | D 3
COSMAC

INTERRUPT AJ

l I 92C5-26484

Fig. 51 — Typical interrupt circuit.

During the S3 cycle, the current values of the X and P registers are stored in the T register. P is then set
to 1, X to 2, and |E to 0. Following S3, a normal instruction fetch cycle (SO) is performed. The S3 cycle,
however, changed P to 1, so that next the sequence of instructions starting at the memory location
addressed by R(1) will be executed. This sequence of instructions is called the interrupt service program.
It saves the current state of the COSMAC registers such as T, D, and possibly some of the scratchpad
registers, by storing them in reserved memory locations. DF must also be saved if the interrupt service
program will disturb it. The service program then performs the desired functions, restores the saved
registers to their original states, and returns control to execution of the original program. Special instructions
RETURN, DISABLE, and SAVE (70, 71, and 78) facilitate interrupt handling. These instructions were
described in the section on Instruction Repertoire; their use will be illustrated in the section on Machine-
Code Programming.

The COSMAC microprocessor also provides a special one-bit register {flip-flop) called Interrupt Enable
(IE). When IE is set to “0”, the state of thg interrupt line is ignored. |E is set to ‘1" by a low on the
CLEAR line. |E can be set to “1” or “0' by RETURN and DISABLE instructions, respectively. It is
automatically set to “0” by an S3 cycle, preventing subsequent interrupt cycles even if the INTERRUPT
line stays low. The program must set |IE to ““1”" to permit subsequent interrupts. Sharing the INTERRUPT
line with a number of interrupt signal sources is possible.

When the interrupt facility is used in a system, R(1) must be reserved for use as the interrupt service
program counter and R(2) is normally used as a pointer to a storage area. The latter may be shared with the
main programs if appropriate conventions are employed, as described in the section on Machine-Code
Programming.
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Machine-Code
Programming
Sample System and Program
A simple program will illustrate the use of the COSMAC instructions and provide an example of system

design. The demonstration system is a programmed multiple-output sequencer, timer, or controller. Fig. 52
shows a block diagram of the system.

L, MAO=T , , 4
s AANNNEE 2
BYTE INPUT
L1 /46 SWITCHES
MEMORY | mwr F
»| 256 BYTES ]

L OR LESS

-
1 ;Lo ENTER SWITCH —>BITO
gs COSMAC [ 8-giT [—=BIT |

L c OUTPUT |—=BIT 2
g’ REGISTER BIT 3

SWITCH OUTPUT | STROB
~ 3-STATE |M READ L] SR - %loeie’ ETROBE —>B8IT 4
// GATE LOGIC L o BiTs
1 > —>B1T 6
7] I ] BIT 7
// rd -~ //
+ 1 5 DATA BUS ’
[ 4L/ s AN A WA A AR AR A
7 77 7 7 77 7 7 7 7 /7 77

Vi L L Lo
VAV 7 7 7 7 7 7 7
EF1=INPUT BYTE READY; 68: INPUT BYTE —»M(R(X)); 60=M(R(X))—» OUT, R(X)+]

7

92CM-26477

Fig. 52 — Sample microprocessor system.

Because a small memory will suffice for this application, no address latch is required. The program re
quires less than 64 bytes and could be stored in a single-chip ROM. RAM capacity of 64 bytes or less is also
required. The switch input logic is used to enter initial parameters and could be similar to that shown in
Fig. 47. An 8-bit output register could be implemented as shown in Fig. 50.

The 8-bit output register provides 8 output bit lines. Each output line can be programmed to provide a
repeating sequence of binary output states. Fig. 53 shows an arbitrary sequence of output states that could
be programmed to appear on the four low-order output lines.

Q1, Q2, Q3, and Q4 represent four states for the eight output lines. For example, if Q1 =03 (00000011),
then the four low-order output lines will have the states shown during the T1 time interval. They will then
assume the states shown at Q2 during the T2 time interval. The state of all eight output lines can be repre-
sented by a single byte. in the sample program, four bytes are entered to specify the value of the output
lines at Q1, Q2, 03, and 04. This sequence of states will repeat indefinitely as lorig as the program runs.
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Fig. 53 — Typical output-state sequence.

The time intervals between output-line state changes are specified by another set of four input bytes
(T1, T2, T3, and T4). The program can easily be modified to permit a larger number of output-line states
to be specified. The repetitive output-register state sequences could be used as a programmable test pulse
generator. The output lines might also activate relays for programmable sequencing of up to eight inde-
pendent external functions or devices.

Fig. 54 outlines the manner in which five scratchpad registers are utilized for this program. R(O) is used as
the program counter for the'entire program. R(3) is used as a loop counter called LC. R(4) is used as a time
interval counter called TC. The four bytes that specify the four sets of output-line values are stored in four
sequential memory locations (Q1, Q2, Q3, and Q4 in Fig. 54). These four bytes are followed by the four
time-control bytes (T1, T2, T3, and T4). R(A) is used to address the four state bytes and is called QP (state
table pointer). R(B) is used to address the four time bytes and is called TP (time table pointer).

M
QPp—=| Q1 R(0) : PROGRAM COUNTER
Q2 R(3) = LC(LOOP COUNTER)
Q3 R(4)=TC (TIME COUNTER)
Q4 R(A): QP (Q TABLE POINTER)
S R (B)= TP(T TABLE POINTER)
T2
T3
T4

92CS-26485

Fig. 54 — Register utilization.

Fig. 55 illustrates the operation of the program in flow-chart form. Step 1 initializes the high-order
bytes of R{A) and R(B) to 00. Step 2 puts the memory address of the first state byte (Q1) into R(A). LC is
set to 8. The operator must now enter a desired set of four state bytes by means of the byte input switches.
The first input bytes will be stored at the Q1 memory location since QP was initially set to address this
location.

After the first input byte is stored in memory, QP is incremented by 1 so that it is addressing the Q2
memory location. LC is decremented by 1 so that it will be equal to 7. A branch instruction causes steps
4—5 to be repeated, and the next input byte wilt be stored at the Q2 memory location. QP will again be incre-
mented and LC decremented. The loop comprising steps 4—5—6—7 will be repeated eight times, causing
eight input bytes to be stored in memory. The first four bytes represent desired output line values and will
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be stored in memory locations Q1—Q4. The second group of four input bytes represent the desired time
intervals between output states and will be stored in memory locations T1-T4.

When eight input bytes have been stored, LC will be equal to zero in step 7. In this case, steps 8-9-10 will
be performed next. QP is set to address the Q1 memory byte again. TP is set to address the T1 byte. LCis
set equal to 4 and step 11 is performed to place the Q1 memory byte into the output register. QP is incre-
mented by 1 so that the Q2 byte will be placed in the output register the next time step 11 is performed.

Step 12 sets TC equal to the value of the T1 byte. TP is incremented by 1 so that TC will be set equal to
the value of the T2 byte the next time step 12 is performed.

Step 13 and 14 continually decrement TC until it reaches a value of zero. The time required for TC to
reach zero determines the time interval between the current output state and the next output state. This
time is a function of the clock frequency, the number of instructions in the loop comprising steps 13—14,
and the original value placed in TC.

At the end of the TC counting time, LC is decremented by 1. If LC does not equal zero, the step 11—17
loop is repeated. This loop causes the Q1—Q2—Q3—Q4 output sequence to occur at the specified T1 -T2—
T3—T4 time intervals. When LC equals zero at step 17, steps 8, 9, and 10 are performed again to repeat the
Q1—-Q2-03—04 sequence. This four-state output sequence is repeated until the system is stopped. After
applying a clear signal, a new set of state and time bytes can be entered to modify the output sequence.

START

STEP

i EO-»R(A).I.R(B).I | —a—lM(QP)-»OUT.OPHJSTnEP

STEP STEP
TE I Ql—= QP, 8—=1LC J iM(rP)—»Tc,TPH ] Tt

STEP - STEP
4-5 LINPUT BYTE—>M(QF’)J'<'— —-—lﬁ TC-I 13

NO
STGEP [ QP +1,LC -1 J DOES TC=0 2 JSTEP
YES
STEP Looes Lc-=0 2 J_ﬁ’_ | LCc-1 JSTlg"
YES
STEP E:n-»op TI*=TP4—»LC I———Jgﬂl DOES LC=0 2 STEP
8-9-10 ’ ! 16-17
l YES
92CS-26482

Fig. 55 — Sample program flow chart.

Fig. 56 shows the actual instruction bytes in memory required for the program. A low on the CLEAR
line sets P equal to 0 and R(0) equal to 0000. When execution is started, the instruction in memory location
0001 will be fetched and executed as described in the section on Memory and Control Interface. The in-
structions required for each flow-chart step are shown.

Note that in step 12 the time-control byte is placed in the high-order half of R(4) or TC. As a result, the
loop comprising steps 13 and 14 will be executed 256 times to decrement the T byte value by 1. Steps 13
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M ADDRESS M BYTE| OPERATION COMMENTS
0000 00
0001 90 R(0).1>D lnitialize higher byte of table pointers | STEP 1
0002 BB D>R(B).1
0003 BA D>R(A).1
0004 F8 M(R{P))>D tnitialize lower byte of Q tabie pointer| STEP 2
0005 2A
0006 AA D>R(A).0
0007 F8 M(R{P))>D Initialize loop counter to 8 STEP3
0008 08
0009 A3 D>R(3).0
000A 3C IF EF1#1 Loop here until byte ready STEP 4
0008 0A GO TO 000A
000C EA A>X .
000D 68 IN>M{R(X)) Store input byte STEPS
000E 1A R{A) +1 Advance table pointer STEP 6
000F 23 R(3)-1 Decrement loop counter
0010 83 R(3).0-D Load and test loop counter STEP 7
0011 3A |F D#00
0012 0A GO TO 000A
0013 F8 M(R(P))>D Reset Q table pointer STEPS8
0014 2A
0015 AA D-R(A).0
0016 F8 M(R(P))>D Set T table pointer STEP9
0017 2E
0018 AB D>R(B).0"
0019 F8 M(R(P))>D Set loop counter to 4 STEP 10
001A 04
001B A3 D>R(3).0
001C 60 M(R(X))»OUT Qutput; advance pointer STEP 11
001D 4B M(R(B))>D; R(B) +1 Load time interval counter STEP 12
001E B4 D>R(4).1
001F 24 R(4)-1 Decrement time counter STEP 13
0020 94 R(4).1-D Load and test time counter STEP 14
0021 3A IF D#00
0022 1F GO TOQ01F
0023 23 R(3)-1 Decrement loop counter STEP 15
0024 83 R(3).0°D Load and test loop counter STEP 16
0025 3A IF D#00
0026 1C GO TO001C
0027 30 BRANCH Repeat basic sequence STEP 17
0028 13 TO 0013

. 0029 ——
002A — Qt Q Table
0028 — Q2 Contains State
002C - Qa3 Bytes
002D - Q4
002E — T T-Table
002F - T2 Contains Time Count Bytes
0030 - T3
0031 —_— T4

Fig. 56 — Sample program code.

and 14 comprise three instructions, or six machine cycles, or 48 clock cycles. With a 100-kHz clock, each
clock cycle is equivalent to 10 x 106 second. Time intervals between output register states would then
equal {256 x 48 x 10 x 10 x Tn), or 0.123Tn seconds. The maximum time interval that could be specified
would be obtained with a T byte value of ““FF"’, which would yield a delay of 256 x 0.123, or 31.5 seconds.
Shorter time intervals can be achieved by using R(4).0 as TC. Longer time intervals could be obtained by

combining several scratchpad registers into a longer time interval counter.
be adjusted to provide a desired time interval range.

The clock frequency can also
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Detailed study of the sample program shown in Fig. 56 will provide a basic understanding of the use of
the individual instructions.

Useful Instructions with X =P

There are three instructions which have particular usefulness when X is set equal to P: the OUTPUT
instructions (60—67), the RETURN instruction (70), and the DISABLE instruction (71). Since each of
these instructions increments the R(X) register, when X=P the R(P)/R(X) register will be incremented once
for the fetch cycle when it acts as program counter and once for the execute cycle. As a result, the byte
immediately following the instruction byte is the operand byte. For example, if P=3, the sequence will

E3 Set X=3.
60 Output a byte from memory.
AD Immediate byte

— Next instruction

output the byte “/AD’’ by means of the data bus.

This technique is also useful with the RETURN and DISABLE instructions, as discussed later in this
section.

Interrupt Service

The use of the COSMAC interrupt line involves special programming considerations. The user should be
aware of the fact that an interrupt may occur between any two instructions in a program. Therefore, the
sequence of instructions initiated by the interrupt routine must save the values of any machine registers it
shares with the original program and restore these values before resuming execution of the interrupted
program.

R(1) must always be initialized to the address of the interrupt service program before an interrupt is
allowed. Fig. 57 illustrates a hypothetical interrupt service routine. R(1) is initialized to 0055 before
permitting interrupt. R(2) is a stack pointer, i.e., it addressed the topmost byte in a variable-size data
storage area. This stack area grows in size as the pointer moves upward (lower memory addresses), much
like a stack of dishes on a table. Also like the dish stack, it shrinks as bytes are removed from the top. In the
interrupt service example of Fig. 57, the stack grew by two bytes as X,P and D were stored on it, and then
decreased to its original size when D and X,P were restored. Such a stack is sometimes referred to as a
“ |FO" (Last-In-First-Out) because the first item removed from the stack is the last one placed on it.

When bytes are to be stored into the stack, the pointer R(2) is first decremented to assure that it is
pointing to a free space. In the example shown, location 00F0 may have been in use when the interrupt
occurred, so the pointer decrements to 00EF to store X,P. When bytes are no longer needed, they are re-
moved from the stack and the pointer is incremented.

The stack in Fig. 57 is used to store the values of X,P and D associated with the interrupted program. If
the interrupting program will modify any other registers (scratchpad or DF), their contents must also be
saved.

After these “housekeeping’” steps have been completed, the “real work’ requested by the interrupt
signal can be performed. This work may involve such tasks as transferring 1/0 bytes, initializing the DMA
pointer R(0), checking the status of peripheral devices, incrementing or decrementing an internal timer/
counter register, branching to an emergency power-shut-down sequence, etc.
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%
START
HERE
ADDRESS BYTE OPERATION COMMENTS
0053 42 M(R(2))>D, R(2) + 1 RESTORE D
0054 70 M(R(2})>X, P; R{2) + 1; 1>IE RESTORE X, P AND R(2);
\ ENABLE INTERRUPTS
0055 22 R(2) -1 DEC STACK POINTER
0056 78 T>M(R{(2)) OLD X, P ONTO STACK
0057 22 R{2) 1 DEC STACK POINTER
0058 52 D+M(R(2)) OLD D ONTO STACK
- SAVE OTHER REGISTERS
{F. REQUIRED
- PERFORM "“REAL WORK"
= REQUESTED BY INTERRUPT
- RESTORE OTHER REGS-
- PREPARE TO RETURN
30 GO TO M(0053)
53
- STORAGE FOR OTHER REG.
00EE STORAGE FOR D
O0EF STACK STORAGE FOR T,i.e. OLD X, P
O00F0 STACK TOP WHEN INTERRUPTED
- OTHER STACK ENTRIES

Fig. 57 — Interrupt service routine.

Upon completion of the “real work”, return housekeeping must be performed. The contents of
registers saved on the stack are now restored. In the example of Fig. 57, program execution branches to
location M(0053). R(2) points at M(OOEE). The LDA (42) instruction at M(0053) restores the original
value of D and R(2) advances to M(OOEF). The RETURN instruction (70) sets IE=1 and restores the
original, interrupted X and P register values. The next instruction executed will be the one which would
have been executed had no interrupt occurred (unless the interrupt is still present, in which case the whole
process is repeated). Note that R(1) is left pointing at M(0055) and R(2) is pointing at M(00FO0), as they
were before the interrupt.

When IE is-reset to O by the S3 interrupt response cycle, further interrupts are inhibited regardless of
the INTERRUPT line state. This setting prevents a second interrupt response from occurring while an
interrupt is being processed. The instruction (70) that restores original program exectuion at the end of the
interrupt routine sets IE=1 so that subsequent interrupts are permitted.

The RETURN and DISABLE instructions can be used to set or reset |E without changing P and per-
forming a branch. A convenient method is to set X equal to the current P value and then perform the
RETURN (70) or DISABLE (71) instruction, using the desired X,P for the immediate byte. For example,
if IE=0, X=5, and P=3, the sequence

E3 Set X=3.

70 Return X to 5, P to 3,
1->1E, R(3)+1.

53 Immediate byte

would have no effect other than setting the interrupt enable IE. A similar sequence with a 71 instruction
can be used to disable interrupts during a critical instruction sequence.
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Branching Between Pages

The branch instructions (1=3) are limited to branches within the currently addressed 256-byte memory
page. In larger programs, it is often necessary to be able to branch to any location in memory. The sequence
of instructions shown in Fig. 68 illustrates one method of performing such a long branch.

ADDRESS BYTE OPERATION COMMENTS
0025 F8 M(R(P})>D
0026 05
0027 84 D>R(4).1 0573>R{4)
0028 F8 M(R(P)}>D
0029 73
002A A4 D>R(4).0 h
0028 D4 4>P CONTROL TO R{4)
002C - R(3) LEFT POINTING HERE

Fig. 58 — Long branch code.

Initially, R(3) is the program counter (P=3). The sequence of instructions shown puts the 2-byte
destination address (0573) into R(4). Setting P=4 then causes a branch to the instruction sequence
beginning at M{0573) with R{4) as the program counter. Note that if the sequence using R(4) as program
counter ends by setting P=3, execution resumes at 002C, with R(3) as program counter.

Subroutine Techniques

In large programs, a given shortsequence of instructions might be used many times. For example, one
short sequence might generate random numbers. The required instructions could be rewritten each place in
the program that the function is needed. However, this duplication of instructions can consume much
memory storage space, especially if the sequence is long. An alternate method is to write the sequence only
once as a subroutine. Each time that the main program needs a random number it would branch to this
subroutine by means of a subroutine call, Completion of the subroutine would cause a return to the main
program at the instruction following the branch to the subroutine. The use of subroutines reduces the
amount of memory required for programs 'since the subroutine instruction sequence occurs only once
instead of each time it is used in a program.

As an example, suppose the designer often wants to execute a long branch. To reduce the code needed
for each long branch, one register such as R(4) could be dedicated as the permanent program counter for a
long branch subroutine. Its entry address, say 1234, would be loaded once at the beginning of the main
program. If R(3) is the main program counter, then a long branch to location 075A would appear as
the following subroutine call:

D4 4-p
07 Address to be branched to
5A will be picked up by subroutine,

The subroutine itself would be as shown in Fig. 59.

This subroutine uses three useful devices: (1) The old program counter R(3) is used to pick up arguments
for the subroutine —— in this case the new address. (2) A temporary location M(R(2)) was needed since
R(3) could not be changed while its old value was still needed to fetch the 5A. (3) By branching to the top
before returning to R(3), the subroutine leaves the program counter R(4) ready for another call by the
main program, or by other subroutines.
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START
HERE
<M ADDRESS M BYTE OPERATION COMMENTS

1233 D3 3P RETURN, LEAVE R(4) OK
1234 43 M(R(3))>D FETCH HIGH BYTE; R(3) +1
1235 52 D>M(R{(2)) SAVE IT ON STACK
1236 43 M{R(3))>D FETCH LOW BYTE
1237 . A3 D>R(3).0 INSERT LOWBYTE
1238 42 M(R(2))>D FETCH BACK HIGH BYTE; R(2) +1
1239 22 DECR R(2) RESTORE STACK POINTER
123A B3 D>R{3).1 INSERT HIGH BYTE
1238 30 B8R BRANCH TO TOP
123C 33

Fig. 59 — Typical subroutine sequence.

This example points up a tradeoff available to the designer. By dedicating registers and loading them
only once, he can shorten subroutine calls to one byte (DN, for appropriate N). The availability of 16
general-purpose registers makes this technique feasible.

In large or complicated programs, subroutines themselves may contain calls upon other subroutines.
This technique is called subroutine nesting. The mechanism described above works only for those sub-
routines which do not call other subroutines. The following example illustrates one of many subroutine
conventions that can be used in large programs. Register assignment is as follows:

R(2) — stack pointer
R(3) — program counter
R(4) — dedicated program counter for call routine
R(5) — dedicated program counter for return routine
R(6) — temporary storage; memory pointer
R(3) is used for both main and subroutine pointer counter. A call takes the following form:

D4 4P

- High byte of subroutine address
- Low byte of subroutine address
—_ } Optional arguments

— Next instruction

The D4 instruction transfers program counter control to R(4), which has been initialized to 0101. The cali
routine is then as shown in Fig. 60.

At the end of the sequence shown in Fig. 60, R{6) points to the first of any optional arguments or, if
none, to the next instruction. R(6) can thus be used by the subroutine to pick up the optional arguments
or, by the return routine, to get back to the next instruction of the original program.

All subroutines terminate with a D5. The D5 instruction transfers program control to R(5), which has
been initialized to 0201. The return routine is illustrated in Fig. 61.
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START
HERE
M ADDRESS M BYTE OPERATION COMMENTS
0100 D3 3P GO TO SUBROUTINE
0101 96 R(6).1>D SAVE LAST RETURN
0102 52 D>M(R({2)) POINTER ON DC STACK
0103 22 DECR R{2)
0104 86 R(6).0>D
0105 52 D>M({R(2))
0106 22 DECR R(2)
0107 93 R(3).1»D SAVE NEW RETURN
0108 B6 D>R(6).1 POINTER IN R(6)
0109 83 R{3}.0-D
010A A6 D>R(6).0
010B 46 M(R(6))>D; R(6) +1 LOAD SUBROUTINE ADDRESS
010C B3 D>R(3).1 USING RETURN POINTER
010D 46 M(R(6))>D; R{6) +1
010E A3 D->R(3).0
010F 30 BR } GO TO TOP
0110 00

Fig. 60 — Subroutine call sequence with preloaded entry at 0101.

START

HERE

M ADDRESS | M BYTE OPERATION COMMENTS
0200 D3 3p RETURN TO ORIGINAL PROGRAM
0201 86 R(6).0>D FETCH ADDRESS OF NEXT
0202 A3 D>R(3),0 INSTRUCTION OF
0203 96 R(6) 1D ORIGINAL PROGRAM
0204 B3 D>R(3).1
0205 E2 25X
0206 12 INCREMENT R(2) § | SET UP STACK POINTER
0207 a2 M(R(2))-D; R(2) +1)| RESTORE LAST
0208 A6 D+R(6).0 RETURN POINTER
0209 FO M(R(2))>D .
020A B6 D>R(6).1
0208 30 BR GO TO TOP
020C 00 }

Note that after a subroutine return using this mechanism, X equal, 2.

Fig. 61 — Subroutine return sequence with preloaded entry at 0201.
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Common
Program Bugs

COSMAC is quite easy to program. Potential pitfalls are easy to avoid and the simple, consistent set of
instructions is easy to understand and use. In general, program debugging will be reduced to a minimun by
careful planning and flow-charting prior to machine language coding. Manually going through several flow-
chart examples will often turn up bugs that would take much more time to discover in the actual program.

It has been observed, however, that certain types of programming errors occur relatively frequently.
Avoiding these programming pitfalls will considerably reduce program debugging time.

One of the most common errors involves the wrong value in X. Setting X to the proper value immediately
before use eliminates this potential problem.

The COSMAC programmer must keep track of which register is currently being used as the program
counter. He must also keep track of 256-byte memory segments to avoid branching problems, since
BRANCH instructions cannot directly branch between 256-byte pages. For long programs, a long branch
subroutine should be employed. :

Improper scratchpad initialization before use is often a source of program bugs. The programmer should
maintain a register utilization list and initialize each register before use.

Program interrupt routines can cause very hard-to-find bugs. For example, if the interrupt service
routine uses a SHIFT RIGHT (F6) instruction, DF may or may not be changed during the interrupt
routine. 1f DF is not saved and restored by the interrupt routine, programs will still run properly most of
the time. Once in a great while, however, interrupt will occur just before a BRANCH on DF instruction,
change DF, and cause a wrong branch. This type of nonrepetitive bug should be avoided at all cost.
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Appendix A —

Instruction Summary

Memory Reference

— Code
Assembler Mnemonic {(Note)
Name

' { { Operation
T '
1 [N JINC [INCREMENT [R(N)+1
2 [N {DEC |DECREMENT [R(N)—1
8 |[N |GLO! GET LOW R(N).0>D
9 [N |GHI | GET HIGH |R{N).1>D
A[N|PLO | PUT LOW D>R(N).0
BIN |PHI | PUT HIGH [D>R(N).1

N=0,1,2,...,9,A,B, .. .,E,F {(Hexadecimal Notation)

ALU Operations

1|N
4 {N |LDA|LOAD ADV [M(R(N))>D:R(N)+1
N |STR [STORE D>M({R(N})
Branching
N
310 |BR |UNCOND.BR.[M(R(P)~R(P).0
3(2|BZ |BR.IFD=00 [M(R(P))~R(P).0
IF D=00/R (P)+1
3|3 | BDF|BR.IF DF=1 |M(R(P))*R(P).0
IF DF=1/R(P)+1
314 {B1 |BR.IF EF1=1 |[M(R(P))>R(P).0
IF EF1=1/R(P)+1
3|5 B2 |BR.IFEF2=1 |M(R{P))>R(P).0
IF EF2=1/R(P)+1
316 [B3 |BR.IF EF3=1 |M(R(P))>R(P).0
IF EF3=1/R(P)+1
3|7 |B4 |BR.IF EF4=1 |M(R(P))>R(P).0
IF EF4=1/R(P)+1
3(8 [ SKP|SKiP R(P)+1
3|A[BNZ|BR.IF D#00 |M(R(P)}>R(P).0
IF D#00/R(P)+1
3 {B |BNF|BR.IF DF=0 [M(R(P))>R(P).0
IF DF=0/R(P)+1
3|C{BN1|BR.IF EF1=0 |M(R{P))>R(P).0
IF EF 1=0/R(P)+1
3|D [ BN2| BR.IF EF2=0 [M(R(P))>R(P).0
IF EF2=0/R{P)+1
3|E [ BN3| BR.IF EF3=0 [M(R(P))}>R(P).0
'F EF3=0/R(P)+1
3| F [ BN4| BR.IF EF4=0 [M(R(P))>R(P).0
IF EF4=0/R(P)+1

I |N

F|0 |LDX|LOAD BY X [M(R(X))>D

F{1 [or [oR M(R(X)) vD>D

Fl2 [anD[anD M(R(X)):D>D

F|3 | XOR|EXCL.OR  [M(R(X))® D-D

F|4 |ADD|ADD M(R(X))+D>D;C>DF

F|5 [SD [SUBTRACT D|M(R(X))—D>D;C>DF

F6 [SHR[SHIFT SHIFT D RIGHT;

RIGHT LSB>DF,0-MSB

F|7 |SM |SUBTRACT M{D-M(R(X))>D:C>DF

F[8 [LDI [LOAD IMM [M(R(P))>D;R(P)+1

F|9 [ORI |OR IMM M(R(P))vD>D;R(P)+1

F[A[ANI |[AND IMM  [M(R(P))-D>P,R(P)+1

F|B |XRI [EXCLOR  [M(R(P))® D>D;

IMM R(P)+1

F{C |ADI |ADD IMM  [M(R(P))+D>D;
C>DF;R(P)+1

F|D|SDI {SUBT D IMM [M(R(P))—D>D;
C>DF;R(P)+1

F|F | SMI [SUBT M IMM |D—M(R(P))>D;
C>DF:R(P)+1

*These are the only operations that modify

DF. DF is set or reset by an ALU carry
during add or subtract. Subtraction is by
2'scomplement: A—B = A+B+1.

Note: This type of abbreviated nomenctature
is used when programs are designed
with the aid of the COSMAC Assem-
bler Simulator/Debugger System,which
is available on commercial timesharing
systems. Refer to ""Program Develop-
ment Guide for the COSMAC Micro-

processor’’ for details.
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| COSMAC Register Summary

D 8 Bits { D Register (Accumulator)

DF 1 Bit | Data Flag (ALU Carry)

R |16 Bits | 1 of 16 Scratchpad Registers

4 Bits | Designates which register is
Program Counter

X 4 Bits | Designates which register is

Data Pointer

N 4 Bits | Low-order Instruction Digit

4 Bits | High-order |nstruction/Digit

8 Bits | Holds old X, P after Inter-
rupt

1E 1 Bit | Interrupt Enable:

Hexadecimal Code

HEX | BINARY | [ HEX | BINARY
0 10000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 c 1100
5° 0101 D 1101
6 0110 E 1110
7 0111 F 11

1N
6|0 | OUT 0| OUTPUT O] M(R{X))}>BUS;
R{X)+1;N=0
6|1 |ouT 1} OUTPUT 1| M{R(X)}>BUS;
R(X)+1;N=1
612 [ OUT 2{ OUTPUT 2| M(R(X)}>BUS;
R(X)+1;N=2
6|3 | OUT 3| OUTPUT 3| M(R(X))>BUS;
R(X)+1;N=3
6la | OUT 4| OUTPUT 4|M(R(X))>BUS;
R{X)+1;N=4
6!5 | OUT 5[ OUTPUT 5] M(R({X))>BUS;
R(X)+1;N=5
6|6 | OUT 6| OUTPUT 6] M(R(X))>BUS;
R{X)+1:N=6
617 | ouT 7| OUTPUT 7| M(R(X))*BUS;
R(X)+1;N=7
6|8 [INPO | INPUTO [BUSM(R(X));
N=8
619 [INP1 | INPUT1 |BUS*M(R(X));
N=9
6lAlINP2 [ INPUT 2 [BUS*M(R(X)):
N=A
6(B[INP3 | INPUT3 |BUSM(RI(X));
N=B
6lC|INP4 |INPUT 4 |BUS*M(R(X));
N=C
6|D|INP5 | INPUTSE |BUS*M(R(X));
N=D
6|E|INPB |INPUTE [BUS*M(R(X)):
N=E
6|F [INP7 | INPUT7 |BUS*M(R(X));
N=F
Control
1N
ojo| iDL |IDLE WAIT FOR
INTERRUPT/
DMA-IN/
DMA-OUT
D|N|SEP |SETP N>P
E|N|SEX [SET X N>X
710 | RET|RETURN M(R(X))> X, P;
R(X)+1;1>1E
711 | DIS [DISABLE M(R(X))>X, P;
R(X)+1;0>IE
718 | SAV|SAVE T>M(R(X))

Interrupt Action: X and P are stored in T

after executing current instruction; des-
ignator P is set to 1; designator X is set to
2; interrupt enabte is reset to O (inhibit);
and the interrupt request is serviced.

DMA Action: Finish executing current in-

struction; R(O) points to memory area
for data transfer; data is loaded into or
read out of memory; and increment R(O).

Note: In the event of concurrent DMA

and INTERRUPT requests, DMA has
priority.
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Appendix B —
State Sequencing

COSMAC STATES/CYCLES STATE CODES
S0 | INSTRUCTION FETCH CYCLE CYCLETYPE SCl SCO
S1 | INSTRUCTION EXECUTE CYCLE S1 1=6(I/O INSTR.) H L
S2 | DMABYTE TRANSFER CYCLE $2 CYCLE (DMA 1/0) L H
S3 | INTERRUPT CYCLE S3 CYCLE (INTERRUPT) | L L
OTHER CYCLES H H
S0 OMA
FETCH
CYCLE
T
s2 si DMA-INT s3
DMA IN/QUT EXECUTE | INTERRUPT
CYCLE
CYCLE Kﬁ: CYCLE Cj L
AN | (— o L J)
DMA LOAD - DMA IDLE-DMA-INT  pma
COSMAC STATE TRANSITION DIAGRAM  opcs_re537
START UP & NORMAL INSTRUCTION SEQUENCE:
EXTERNAL ~ C'—EAR‘ CLOCK ON | ... [D'V'QOUT] {15t INSTR. FETCH FROM M(0001)
INTERNAL —— |s1 |st |st |s1t st [s1]s2]so[st [so]st [so st
STATECODE- | —— |HH |HH [HH|HH | HH |HH | LH | HH [ HH |HH | HL | HH | HH
EXECUTION OF 1/0 BYTE TRANSFER INSTRUCTION S |
EFFECT OF DMA IN/DMA OUT/INTERRUPT ON NORMAL SEQUENCE
EXTERNAL—> | ........ ... [omain]... [inTERRUPT] ....... oMAOUT |...... ...
Y [ ]
INTERNAL S0 [st |so st |s2|so st |s3([so st |so st |s2]so|si
STATE CODE ~ HH | HH [HH |HH | tH [HH [HH | LL [ HH [HH [HHf HH [ LH [ HH T HE

—
INSTRUCTION TIME
(2 CYCLES)




Appendix C —
COSMAC Interface
and Chip Connections

Vcc:jl.V 40— Voo
8US 3 —{2 39+—8BUS 4
DATA | sos5 | - DATA
Bus { BUs2—3 38—BUS 5 BUS
| BUS T —]4 37— BUS 6 -
8US0—15 36}—BUS 7
NO —{6 35— Vss vee—]1e 28—Vpp
1/0 NI —7 3q}—EFI — |
COMMANDS — gl BUS4 —2 27—BUS3 | 10
— Nz — 8 33L—EF2 1/0 DATA 26— BUS 2
— iy FLAGS | BUS B —3 —BUS 2 | Bus
N3 —9 32— EF3 -— 257 5055 —a 28— BUS -—
x—i0 3I—EF4 LW——S 24—BUS O
* —N 30— DMA OUT 1/0 8o —le 3l x
*—i2 29— INTERRUPT | REQUEST WA —17 22} — TPB <
-—
*—13 28— DMA IN | -
] — MEMORY | MA2-—8 2 *
x—i4 27— CLEAR CONTROL ADDRESS | A3 —9 20— %
— {cmcx—w 26— LOAD e LINES A —lio rol— x
TIMING - TPB —I6 25— I.C.(NOTE 4) * —
PULSES — — MAS —11 18— %
-— TPA —|i7 24— §Ci }STATE RS — 12 7l x
% —is  23—5c0 CODE i
R — MA7 —{13 16— %
MWR —19 22|— MREAD — Ves —ia 15— CTERR -
Vgg —20 21 *
TOP VIEW
TOP VIEW
TA6889 TA6890
92CS5-264!7 92CS-26418
Package Interconnections
* * * * * * *
TA6889PinNo. | 1213 |4 |5 |10 f11}12)13|1a]|16}18|21|27]|36] 37| 38| 39]40
TAB890PinNo. | 1 |27126 | 26 [ 24 | 17 |18 |19 20 |23 2221 |16 |15 5 |4 |3 |2 |28

* These pins are for interchip connections only.

Notes:

1. Any unused input pins should be connected to Vpp or Vcc.

2. The Data Bus lines are bi-directional and have three-state outputs.
They may be individually connected to V¢ through external pull-up
resistors (22 k§2 recommended) to prevent floating inputs.

3. All inputs have the same noise immunity and level-shifting capability.
All outputs have the same drive capability whether they have three-
state outputs or not.

4. Pin 25 of TA6889 is used for an internal connection—do not use.

Terminal Assignment Diagrams
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Appendix D —
COSMAC Timing Summary

GENERAL TIMING:
—»| |«—T(NOTEI!)

CLOCK
TG NrtrvaLs I51817Io 1 [2[3[4]5[6]7[o]1 [2[3][2]5]e]7 o] [2[3]]5] 67 [o]1 [z]3 ]~
MACHINE CYCLE e oo | CYCLE n | CYCLE n+1| | CYCLE n+2 | e
vl [FETCH INSTRUCTION (] EXEC. INSTR.L___ | FETCH INSTR.L+I_|EXEC. INSTR U+

CYCLE = 8T4>‘

INSTRUCTION TIME ('.I) =2CYCLES
TIMING PULSES: |
lol1[2[3]4[s]s|[o] i [2]s]s[s|e|7lo]1]2[3]a]s]s|]
|

- | |
TPA —u | ] 11_|
TPB I LJ | 8]
Hofbisr [
0.5T
> [«0.5T
MEMORY TIMING: e Ll
ADDRESS (MAO TO MA7) Al At Al fle—a0—17/ ] Al J«—a0 ]/
R | |
M READ I I 1 —
MWR (NOTE 2) ! 1
MEMORY OUTPUT » }«<——OFF . D
\VALID BYTE NOTE 3 “\VALID BYTE
ALLOWABLE MEMORY ACCESS TIME < 35T - tg

—™ =  (t5=SETTLING TIME)
Timine iNTervacs 15[617[ol12]3[4s[e]7[o[1 [2[3]2]s]e[7 o[ 1 T2 3]4[s[e]7 o[ 1]2]3]

INPUT ’ l ‘ ‘ l ‘

INSTRUCTION TIMING:
TPA I | S— [

TPB ] ns) LS LI

STATE/N [=——s50——] [si-I=6/1xxX SO OR S2 OR S3 |

BUS¥® fe———OFF———— INPUT BYTE || = OFF -
MWR —

OuUTPUT
INSTRUCTION TiMING:

STATE/N le——s0o———]  siex=6/0xxx| []]
NO—N3 Z N VALID |
| %

BUS A
[si-(z-6)-TPB]"

SO OR S2 OR S3 |

BYTE OUT bt
92CL-26421



INTERNAL
T|M|NG|NTERVALS—IB[6|7IOIII2|3|4]5]6]7|0|I|2|3|4|5|6|7IO|I|2l3|4l5|6|7|0]ll2|3[
DMA TIMING: ‘ \ H ’ ‘ H } ~ \ |

TPA —1L_r T | B T W T LT
TPB LI U
STATE f———so——>]/ SIORS20RS3 |= s2 I so
. W
DMA-IN/DMA-OUT * ') V 2| V
¥*
DMA-IN ONLY{BUS OFF [ wPuTBYTE ||  OFF
MWR |j—'ﬂ
AevTeE )
1

ONLY

pMA-ouT | BUS .
(s2-TPB)

INTERNAL

[[2T3]4[s[e[7[o] [2[3]2]s]e]7]o] 1[2][3]

TIMING INTERVALS IsJe7]o] i [2[3]4]s]e]7]o
|

INTERRUPT TIMING:

TPA iy S | S

| || H

| S | S—
TPB U U
STATE [«—s0 } f= S| i je S3 »] S0 OR S2
e hIaT * NN ~ N .,
INTERRUPT SNBENNNNNNN N 00N N

INTERRUPT ENABLE*
FLAG INPUT TIMING:

— 41

| INHIBIT INTERRUPT

J|

|

STATE P——so-x=3¥——l~—sn-1=3ﬂ]

S, 52, S3 OR SO-I# 3|

)

FLAG*

A 1

¥* =
A=

SIGNAL GENERATED BY USER
INTERNAL TO COSMAC

NOTES:
|. MINIMUM T DETERMINED BY Vpp——NO MAXIMUM T
2. MEMORY WRITE PULSE WIDTH (MWR) = 1.5 T
3. MEMORY OUTPUT "OFF" INDICATES HIGH- IMPEDANCE CONDITION.
4. SHADING INDICATES "DON'T CARE" OR INTERNAL DELAYS DEPENDING ON

Vpp AND THE CLOCK SPEED.

92CL -

26422
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A (address register), 10

Access time, 34

Architecture, 10

Architecture and Notation, 10
Arithmetic-logic unit (ALU), 12
ALU operations using M(R(P)), 22
ALU operations using M{R(X)), 18
Asynchronous memory, 35

Branching, 25, 563
Byte, 7

Clear input, 10

Clock input, 10

Common Program Bugs, 57
Control, 27

Control interfaces, 35

D (data register), 10

Data bus, 9

Data flag (DF), 12

Data input, 40

Data output, 39

Direct memory access (DMA), 9
DMA cycle (S2), 42
DMA-IN, 43

DMA operation, 42
DMA-OUT, 44

Example of Program, 50

Hexadecimal (hex) notation, 10

| {(instruction register), 12
Immediate byte, 22
Input/Output (1/0), 7

1/0 byte transfer, 24

1/0 control signal lines, 9
1/0 device interface, 39
1/0 flag inputs, 9
Instructions, 7, 12
Instruction Repertoire, 15
Instruction time, 13
Instructions and timing, 12
Instruction utilization, 29
Interrupt Control, 44

INTERRUPT ENABLE (iE) flip flop, 9, 44

Interrupt Handling, 28

Interrupt Line, 9

Interrupt Service Program, 45
Interrupt Response Cycle (S3), 44
Interrupt Service, 51

Load signal line, 10

Long branch, 53

Machine code programming, 47
Machine cycles, 13

Memory address lines, 10

Memory and control interface, 33
Memory read level, 10

Memory Reference instructions, 17
Memory write pulse, 10

N Code, 9
N (4-bit register), 10, 12

P (program counter register), 10
Page, 27

Programs, 7

Program counter, 13

Program Load Facility, 43

R (scratchpad registers), 10

RAM (random access memory), 9
ROM (read-only memory), 9
Register Operations, 15

Sample System and Program, 47
Scratchpad registers, 10
Stack pointer, 51

State Code, 9

State 0 (S0), 13

State 1 (S1), 13

State 2 (S2), 42

State 3 (S3), 44
Subroutines, 53
Subroutine call, 53
Subroutine nesting, 54
Subroutine techniques, 53
System Block Diagram, 8
System Organization, 8

Timing lines, 9

X (auxiliary register), 10



DEVELOPMENTS

Microprocessor Employs
Proven CMOS Technology

What is claimed to be the first micro-
‘power, relia-

sign techniques were used in fabri-
cating the commercial CD4000A ser-
ies of CMOS general-purpose inte-
grated circuits, the 2-chip device will
provide system designers with a
low power central processing unit
(CPU) that employs a technology
with a proven capability of successful
operation in difficult noise, temper-
ature, and power environments.
CPU architecture includes a 40-pin
interface which simplifies total system
design. The chips contain a total of
approximately 6000 - devices and are
said to have the most powerful
capability of any known micro-
processor. Architecture is based on
an array of 16 address pointers,

each of which can be used as a
program counter, for data storage
or as a data pointer, or to control on-
chip direct memory access (DMA)
operation. Interrupt capability is
supplied, and an 8-bit, 2-way data
bus interconnects the processor with
any combination of random access
memory (RAM) and read-only mem-
ory (ROM), and peripheral devices.

When operation is from a typical
power supply of from 10 to 12 Vdc,
machine cycle time (eight clock
pulses) is about 3 ps. Assuming a 1-us
RAM, the chips exhibit a 6-us fetch/
execute time for any instruction, 333-
kilobyte/s DMA rate, and 3- to 9-ps
interrupt response time.

Design of the microprocessor was
completed after prototypes were in-
terfaced with computer terminals, TV
sets, keyboards, audio cassette players,
a floppy disc, communication lines,
and a minicomputer. Because of their
high reliability, low power require-
ments, and simplified architecture,

CLOCK
RESET
rr LOAD
® N

¥ FLAGS {4)

8-BIT DATA BUS

ADDRESS
R N T
TO MEMORY

TIMING PULSES

STATE CODE (3)

1/0 COMMAND {4) Architecture of the 2-

chip CPU provides a

1/0 REQUESTS (3} 40-pin interface, sim-
plifying total system
design

DATA, DEVICE CODES,
COMMANDS, STATUS

»

Heart of the micro-
o processor is a 16 x
commano 16 scratchpad; any
reference to mem-
ory is made via one
of these 16 regis-
ters

the chips are expected to be useful
in low cost, high volume systems such
as process controls and manufacturing
automation as well as in automotive
control devices, point-of-sale termi-
nals, and programmable calculators.
Details on the chips, which should be
available to OEMs on a sampling
basis this year, were disclosed at the
1974 International Solid State Cir-
cuits Conference.

COMPUTER DESIGN/APRIL 1974
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-COSMAC — A MICROPROCESSOR FOR MINIMUM COST SYSTEMS

Norman P. Swales and
Joseph A. Weisbecker
RCA Corporation
Palm Beach Division
Palm Beach Gardens, Fla 33403

SUMMARY

Microprocessors are becoming increasingly important devices in
the design of digital systems. A number of these devices are available
in the marketplace today for use in both special purpose and general
purpose applications. COSMAC, a microprocessor currently being
developed by the RCA Corporation, is a COS/MOS LSI processor
designed for use. as a general purpose computing element. The
COSMAC processor architecture. described in this paper has been
developed to provide maximum flexibility for low cost computer-
based systems. The COSMAC instruction set and Input/Output
interface have been designed to minimize memory requirements and
system complexity. Experience with this architecture has verified its
usefulness over a wide range of potential applications.

OVERVIEW

Over the past several years the increasing capabilities of
semiconductor manufacturers to implement large arrays of tran-
sistors on a single intergrated circuit pellet have enabled the industry
to create increasingly complex devices. MOS LSI technology has
been used successfully in electronic watch circuits, in calculator
applications, and, more recently, in sophisticated microprocessors.1

The microprocessor is becoming an important tool for logic and
systems designers. Although it will have some impact on the low
performance end of the minicomputer market?its major successés are
being scored in control function applications where microprocessors
are being used to replace complicated switching functions which
were previously realized with discrete digital logic” The low cost,
flexiblilty, and fast design cycle time which these devices provide are
making them increasingly popular with designers. A microprocessor,
coupled with a small amount of semiconductor memory and a few
inexpensive peripheral devices, can provide a cost effective system
for applications where the use of computer technology was previous-
ly unthinkable - home entertainment, automobile control, and
educational and business systems to name a few. -

MICROPROCESSOR DESIGN

Basically, a microprocessor is a dévice capable of performing

arithmetic, logical, and decision making operations under the control
of a set of instructions stored, either temporarily or permanently, in
some memory device. It is capable of communicating with a set of
peripheral devices via some defined Input/Output (I/O) structure. Its
operation is slow when compared to larger computing devices, such
as miniprocessors, but it is implemented on one or a few monolithic
integrated circuit chips and it is not expensive.

The above provides a general framework into which a micro-
processor should fit: There are, however, other stringent constraints
on the design of a useful microprocessor. The basic design problem is
to develop a simple, but flexible, processor architecture which can be
used to realize inexpensive systems. It is important to minimize the
complexity of the processor itself, with respect to both internal logic
and the required number of external connections, so that the device
is easy to produce and package. The architecture should possess an
efficient Input/Output structure to help reduce the number of

circuits required to interface with external devices and to help
increase system performance. In addition, the architecture should
provide for efficient use of main memory storage.

It is these latter considerations which have led to the develop-

-ment of the COSMAC microprocessor.

COSMAC ARCHITECTURE

An eight bit, parallel, register oriented architecture was chosen
for COSMAC as being best suited to the requirements of optimizing
performance, memory usage, and processor complexity. An eight bit
machine provides sufficient width to effectively manipulate the
standard code and data units of a majority of the communications
and information processing fields while providing a significant
performance advantage over bit serial and four bit machines. A 12 bit
machine would have provided more performance but it would also
have caused difficulties when addressing more then 4K words of
memory and it would have caused inefficiencies when manipulating 8
bit data. Also, both 12 and 16 bit machines suffer from the
disadvantages of requiring more logic and more I/O pins - both of
which are inconsistent with the desire to minimize the chip area
required by the processor. A register oriented structure was chosen
to provide convenience in implementing programs utilizing.interpre-
tive subroutine coding techniques, for macro programming, as well as
the ability to efficiently manipulate data when programming in the
machine language and to effectively implement foreground/
background processing using the processor’s interrupt facility.

A simple two-step-fetch and execute sequence was selected for
the basic machine cycle and considerable emphasis was placed on the
Input/Output interface. A total of twenty three lines, including an
eight bit bi-directional data bus are used to control the 1/O. In
addition to a data transfer capability, these twenty three lines
provide internal processor state information, an interrupt capability,
a device sensing capability, an I/O command code modifier, and
controls for a built-in, cycle stealing, direct access I/O facility. )

The block diagram of Figure 1 shows the general architecture of
the microprocessor. The Register Matrix is an array of sixteen 16-bit
registers which may be addressed by the P, X, or N registers. The I, P,
X, and N registers are all four bits in width. The I and N registers are
used to hold the instruction fetched from main memory; the
contents of the I register determine the generic instruction type to be.
executed, and, depending upon the contents of the I register, the
contents of the N register are used to seléct one of -the matrix
registers, to control the Input/Output devices, or to provide further
definition of the instruction to be executed. The contents of the P
register determine which of the 16 matrix registers is being used as.
the current program counter. The X register is used to address the
Register Matrix to fetch the address of memory -operands for certain
memory reference instructions. The T register is an eight bit register
used to store the contents of the P and X registers whenever a
program state change occurs in response to an interrupt. The A
register is'a 16 bit register used to temporarily hold the data fetched
from the Register Matrix. A 16 bit Increment/Decrement network is
used to update information fetched from the Register Matrix. One
eight bit multiplexer is-used to gate the contents of the A register to
the eight bit memory address bus and a second multiplexer is used to
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gate the contents of the A register to the eight bit, bi-directional data
bus. :

INPUT/
MEMORY OUTPUT
INTERFACE|
»

TIMING
d AND
CONTROL

INCREMENT,
DECREMENT
REGISTER
MATRIX

R1 RO

8 BIT INTERNAL DATA BUS

Figure 1. COSMAC Internal Architecture

The D register is an eight bit accumulator with associated zero
decode and carry, or link, indicator which may be interrogated with
the branch instruction. The ALU is an eight bit parallel arithmetic
and logic unit capable of performing binary add, and subtract, logical
and, or, exclusive or, and shift operations. One operand is contained
in the D Register and the other is contained in memory and present
on the data bus. The add, subtract, and shift operations may modify
the carry indicator.

As shown in Figure 1, the COSMAC Memory System shares the
microprocessor 1/O interface with the system peripheral devices.
Although the memory address is sent to the memory system
separately, data is transferred between the processor and memory via
the I/O data bus.

COSMAC INSTRUCTION SET

A notation convention has been developed to describe the
operation of the COSMAC microprocessor and will now be presented
in order to abbreviate the description of its Instruction Set. R will be
used to designate one of the matrix registers; R1 will designate the
most significant byte (MSB) of R, and RO will designate the least
significant byte (LSB) of that same register. R(N), R(X) and R(P)
will be used to designate the matrix register specified by the N, X,
and P registers, respectively. For example, R1(N) represents the MSB
of- the matrix register specified by the N register and RO(N)
represents the LSB. Similarly, M will designate the contents of a
memory location, and therefore, M(R(X)) will designate the contents
of the memory location addressed by the matrix register specified by
the X register. As an example, M(R(N)) -» D; R(N) + 1, describes
the Memory Transfer to D instruction (Instruction Code (I) = 41¢).
The contents of the memory location addressed by the matrix
register specified by the N register are transferred to the D register
and the contents of the matrix register are incremented by 1. Using
similar notation, the COSMAC Instruction Set is described in the
table of Figure 2.

All of the COSMAC instructions use the same fetch and execute
cycle sequence. During the fetch cycle the four bit address contained
in the P register is used to select the matrix register which has been
designated as the current program counter. The contents of the
selected matrix register are gated into the A register and are then sent
to the miemory system via the memory address multiplexer. The
contents of the A register are incremented by one in the Increment/
Decrement network, and the result is stored in the matrix register
specified by the P register. Finally, the contents of the addressed
memory location ‘are gated into the I and N registers via the eight bit
bi-directional data bus. In the notation defined above, this operation
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would be written as M(R(P)) I, N; R(P) +i. During the

“execution cycle of the instruction, the digit contained in the I

register is decoded and the instruction is executed as described in
Figure 2.

- Certain of the microprocessor instructions require further
explanation other than that given in Figure 2.

The IDLE instruction (Instruction Code (1) = 01¢) is used as an
instruction halt. Whenever this instruction is encountered in the
program flow, the contents of the memory location specified by the
matrix register specified by the N field are displayed on the I/O bus.
The system will remain in the IDLE state until the receipt of an
Interrupt or Direct Access Input or Output Request.

The DO to ROO instruction (I=C1g) places the four least
significant bits of the D register into the four least significant bits of
the matrix register specified by the N field and therefore may be
used to implement single digit table look up operations.

The Load P instruction (I=D]g) causes the contents of the N
register to be transferred to the P register, providing a very simple
branch and link capability.

. The Save State instruction (I, N = 716, 816) helps provide the
capability to store the machine’s pre-interrupt state after an interrupt
initiated program state change has occurred. The Return instructions
(I, N=7,0and I, N.= 7, 1) allow program control of the interrupt
mask bit as well as the ability to change the contents of the P and the
X registers simultaneously. These last three instructions enable the
processor to implement Foreground/Background programming in an
interrupt driven system.

The Data Immediate instructions (I, N = F, 8 through F, F)
provide the ability to easily inject constants from the main program
flow into data and address manipulations. These instructions use the
contents of the memory location immediately following the instruc-
tion code location as one of the operands in the specified operation.

The Test and Branch instruction (I=31¢) tests the condition
specified in the N field. If the condition is met, then the contents of
the memory location immediately fQllowing the instruction is placed
into the least significant byte of the matrix register specified by the P
register; otherwise, the next instruction in sequence is executed.

INPUT/OUTPUT

One area of major concern in any progessing system is the
computer’s Input/Output (I/O) Interface. All of the peripheral
devices in a system must use this interface when communicating with
the processor, and, therefore, the level of complexity and the
efficiency of this interface have a great effect on the overall cost and
performance of any given system. This is especially true in systems
using microprocessors where the cost of the microprocessor repre-
sents a very small portion of the overall system cost and where
system performance is limited by the speed of the processor.

In order to extend the useful operating range of the COSMAC
microprocessor, considerable emphasis was placed on its Input/
Output structure. The processor interface, physically composed of
twenty three signal lines (See Figure 3), is capable of supporting
devices operating in polled, interrupt driven, and direct access modes.
The processor is equipped with a set of very flexible Input/Output
instructions, a built-in Direct Access 1/O capability, an I/O interrupt
line, four External Flag Indicators, a set of External Timing Pulses,
and an eight bit, bi-directional data bus.

The Input/Output instruction (Instruction Code (I) = 616) is
used to control the I/O devices operating in the programmed mode.
As can be seen in Figure 2, there are actually sixteen sub-instructions
incorporated into the I/O instruction; eight of these provide for



INSTRUCTION ::'\c'fgé A IEST
FUNCTION INSTR CODE | FIELD*
(HEX) ; UCTION (HEX) | (HEX) fUNCTION
INCREMENT TEST AND
REGISTER 1 R(N) +1 BRANCH 3 0 M(R(P})) -» RO(P)
DECREMENT . - R
REGISTER 2 RIN) — 1 1 M(R(P}) -» RO(P) IF D # O/R(P)+1
RO 10 O 8 ROIN) D 2 -M(R(f)) - 50(?) ‘lF p = 0/R(P)+1
110D ° RIN) - D 3 M(R(P)) - f«O(f) IF D}F = 1/R(P)+1
bt6 RO A D — ROIN) 4 MI{R(P)) — RO(P) IF EF1 = 1/R(P)+1
5 M(R(P RO(P) IF EF2 =
D to R 6 D = R1(N) (R(P)) = RO(P) 2 = 1/R(P)+1
6 M(R(P)) - RO(P) IF EF3 = 1/R(P)+1
DO to ROO c DO - ROO(N)
7 M(R(P)) —» RO(P) IF EF4 = 1/R(P)+1
IDLE (] IDLE; M(R(N)) -» BUS
8 RO(P) + 1 (SKIP)
MEMORY TO D 4 M(R(N)) -» D;R(N) + 1
B M(R(P)) —» RO(P) iF DF = 0/R(P)+1
D TO MEMORY 5 D —=M(RI(N))
c M(R(P}) —= RO(P) IF EF1 = 0/R(P)+1
LOAD P D N-—P
D | M(R(P)) = RO(P) IF EF2 = O/R(P)+1
LOAD X E N - X
) E M(R(P)) -» RO(P) IF EF3 = 0/R(P)+1
CHANGE STATE
AND RESET F M(R(P)) - RO(P} IF EF4 = 0/R(P)+1
INTERRUPT ) ,
MASK 70 M(R(X)) = X,P;R(X)+1;RESET IM *Unused TEST CONDITION SHOULD BE CONSIDERED ILLEGAL.
1/0 TRANSFER| 6 0 M(R(X)) = I/O;R(X) + 1
CHANGE STATE
AND SET 1 M(R(X)) —» I/O;R(X) + 1
INTERRUPT
MASK 71 M(R(X)) = X,P:R{X)+1:SET IM 2 M(R(X)) —» 1/O;R{X) + 1
SAVE PRE- 3 M(R(X}) = I/O;R(X) + 1
INTERRUPT
PROGRAM STATE | 78 T —»M(R(X)) 4 M(R(X)} - /O;R(X} + 1
INDEXED 5 M(R(X)) = I/O;R{X) + 1
MEMORY
TRANSFER 6 M(R(X)) - I/O;R(X) + 1
TOD Fo M(R(X)) == D
7 M(R(X)) - I/O;R(X) +1
OR F1 M(R(X}) + D -» D
; 8 /0 —» M(R(X))
AND F2 M(R(X)) -D =D
9 1/0 —» M(R(X))
EXCLUSIVE OR F3 M(R(X)) ® D »D
A 1/0 == M(R(X})
ADD F4 M(R(X)) PLUS D —»D
B 1/0 = M(R(X))
SUBTRACT F5 M(R(X}) MINUS D - D
, c 1/0 —» M(R(X))
SHIFT RIGHT F6 SHIFT D, 1BR - DF
D 1/0 = M(R(X))
REVERSE
SUBTRACT F7 D MINUS M{R(X}) - D E 1/0 - M(R(X))
DATA IMMEDIATE F 1/0 - M(R(X))
TRANSFER TO D F8 M(R(P)) —»D;R(P) +1
OR IMMEDIATE F9 M(R(P)} + D —» D;R(P) + 1
AND IMMEDIATE FA | M(R(P))-D-»D;R(P)+1
EXCLUSIVE OR
IMMEDIATE FB M(R(P)) ® D -» D;R(P) + 1
ADD IMMEDIATE FC M(R(P)) PLUS D — D;R(P) + 1
SUBTRACT
IMMEDIATE ED | M(R(P)) MINUS D — D:R(P) + 1
REVERSE
SUBTRACT
IMMEDIATE FF D MINUS M(R(P)) - D;R(P} + 1

Figure 2. Instruction Summary
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information transfer from the I/O devices to the processor rﬁemory;
and, the other eight provide for information transfer from the
processor memory to the I/O devices.

8 BIT BI DIRECTIONAL DATA BUS

4 BIT 1/O COMMAND CODE MODIFIER

2 EXTERNAL TIMING PULSES DEVICES

COSMAC

2 EXTERNAL STATE CODE INDICATORS ’

INTERRUPT REQUEST

‘ DIRECT ACCESS INPUT REQUEST

' DIRECT ACCESS OUTPUT REQUEST

Figure 3. COSMAC Input/Output Interface

During the execution cycle of the I/O instruction, the External
State Code (ESC) lines of the I/O interface assume a particular state,
indicating to the I/O devices that a programmed mode data transfer
is to take place. The I/O device which was last selected, using the
device select command (one of the eight data output I/O sub-
instructions), responds by either placing data on the I/O bus or by
taking data from the I/O bus depending upon the state of the four
I/0 “N”’ (1/0 Command Code Modifier) lines.

In order to avoid confusion on the I/O bus, only one device at a
time should communicate with the processor via the data bus. To
ensure this condition, a device selection convention has been adopted
for use in large systems. The 16 instruction with the N field (and
therefore the I/O “N” lines) equal to 1]¢ has been designated the
Select instruction. All devices in a system are assigned a unique
address. Whenever a device detects the I6 condition on the ESC lines
and a value of 11 on the I/O “N” lines, it compares the information
presented to the data bus by the processor with its assigned address;

. if these two bytes are the same, the device becomes selected, and, if
the two bytes differ, the device becomes or remains de-selected. A
device may communicate with the processor in the program mode
only while it is selected.

The sixteen 16 instructions provide a very powerful tool when
designing Control Electronics Units (CE’s) to interface between the
processor and its I/O devices. The action taken by any given CE in
response to any of the I6 instructions is defined by the CE designer
and may vary from CE to CE. These instructions may be used to

- replace sequencing logic in the CE’s, to distinguish between
command, status, and data transfer requests, or to control multiple
devices through a single CE. In short, they provide a flexible method
of implementing simple I/O control procedures for small, dedicated
systems as well as sophisticated control procedures for more complex
systems. Large systems may be required to use all of the features

~ provided on the I/O interface, but smaller systems can be created
using any ‘subset of the I/O signals and conventions.

Four External Flag Signals are provided on the COSMAC
interface to enable the CE’s to quickly transfer status information to
the processor. These signals may be tested directly by the Test and
Branch instruction.

A single Interrupt line - is provided to enable any control
electronics unit to demand immediate program service from the
processor. This line may be treated as a common interrupt bus or asa
hardwired priority daisy-chain interrupt facility depending upon the
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requirements of the system in which it is used. Whenever the
processor detects an interrupt condition, assuming interrupts are not
masked, it enters an interrupt response state at the end of the
instruction which was being executed when the interrupt was
received. The ESC lines at the I/O interface assume the Interrupt
State Condition indicating to the I/O devices that an interrupt is
being honored. The contents of the P and the X registers of the
processor are transferred to the T register so that the pre-interrupt
state of the machine may be saved. Finally, a value of 11 is placed
in the P register and 216 is placed in the X register. Normal
instruction fetch and execution is then resumed using R1 as the new
program counter, effectively causing a hardwired branch and link to
the subroutine addressed by the matrix register R1. The machine
state instructions (Instruction Code = 716, see Figure 2) may be used
to control the interrupt mask as well as to save and alter the state of
the P and X registers.

A cycle stealing Direct Access I/O facility was incorporated into
the COSMAC processor to provide a high speed data path between
the I/O devices and the processor. Two of the I/O signals, Input
Request and Output Request, may be used by the I/O devices to
initiate a data transfer via this Direct Access Channel. Only one
device at a time may operate in the Direct Access Mode.

A Direct Access device must be selected and activated in the
programmed mode. Once activated, the device may initiate a data
transfer by signaling the request to the processor via the Input
Request or the Output Request lines. The processor responds to the
request by entering the Direct Access State after finishing the
instruction which was in progress when the request was received. The
processor forces the ESC lines to assume the Direct Access State
condition to indicate to the I/O device that it is processing the
transfer request. The CE places data onto the data bus if an Input
Request has been initiated or removes data from the bus if an Output
Request has been initiated. The data is placed into or removed from
the memory location specified by the RO register of the Register
Matrix. At the end of the Direct Access transfer, RO is incremented
by one byte so that the processor is ready to act upon the next
transfer request. A CE need not be in the selected state in order to
issue Direct Access transfer requests. The use of this channel,
therefore, does not interfere significantly with program execution or
with the simultaneous use of other programmed mode devices. This
channel may be employed to communicate with devices which have
very high transfer rates.

A Program Load Facility using the Direct Access Channel is
provided to enable users to enter programs into the COSMAC
memory. This facility provides a simple, one step means for initially
entering programs into the microprocessor system and eliminates the
requirement for specialized ROMS in main memory to bootstrap user
programs into the system.

CHIP TECHNOLOGY -

COSMAC is presently implemented on two chips employing
RCA’s standard COS/MOS technology. Both chips were layed out
manually using standard cell techniques with computer aided mask
generation and checking. One chip contains the Register Matrix, the
Increment/Decrement network, the A register, and the A register
multiplexers shown -in Figure 1; the second chip contains the
remainder of the processor elements shown in Figure 1. The Register
Matrix chip is 236 X 246 mils and the Arithmetic and Control chip is
256 X 254 mils. Both chips contain approximately 30090 transistors.
The COS/MOS technology was chosen because it provides many
features which are advantageous in the design of inexpensive systems.
The two chip processor is capable of operating' with any supply
voltage from 5 to 12 volts; this wide operating voltage range enables
direct connection to a variety of circuit types. Inexpensive, unregu-
lated power supplies can be used. The current drain on the power
supply is negligible - each chip dissipates only about 100 microwatts.



The operating temperature range of the devices extends from -55 to
+1250C. Most important, the inherent high noise immunity of
COS/MOS provides reliable operation even in hostile environments.

Considerable care was taken in the chip circuit design to ensure
that the final product would be easy to use and to interface. Only a
single phase clock is required. The voltage required to drive the
inputs and outputs is not dependent upon main supply voltage so
that the processor can take advantage of the speed benefits of
operating at a high voltage, while the inputs and olitputs may be
operated at lower, T2L compatible levels. Also, all registers in the
machine are static, providing the ability to stop the clock generator
for indefinite periods without losing information in the processor.

Although the COSMAC devices are new, future enhancements
are already being developed. It is anticipated that the processor will
soon be implemented on a single chip, and, the implementation of a
high speed version of COSMAC using a Silicon on Sapphire
technology is presently under investigation.

SOFTWARE AND SOFTWARE SUPPORT

No matter how convenient a computer system is to implement
in hardware, it cannot be considered easy to use unless some facility
is provided to ensure that the system is easy to program. In order to
provide this facility, a complete machine language assembler and
simulator/debugger system were created and made available on
RCA’s corporate Time-sharing service. This interactive assembler
system provides the ability to easily program the microprocessor
using the COSMAC machine language or the repertoire of macro
instruction subroutines which were created to simplify the program-
ming of large software systems. The capability is provided for on-line
editing of source programs.

A standard Fortran version of the above mentioned assembler/
simulator/debugger is being made available for batch processing as
well as for use on any IBM Time-sharing Operating System.

In order to prove the utility of the COSMAC instruction set, a
number of experimental systems have been designed and pro-
grammed. The applications which have been studied include word
processing, educational and calculator functions, entertainment
systems, and communications and real time device control systems.
All of the applications programming done to date, requiring memory
sizes ranging from 1K to 16K bytes, have indicated that the
COSMAC instruction set does make efficient use of memory and that
its processing speed is sufficient to handle a wide variety of processor
applications.

HARDWARE AND TYPICAL SYSTEMS

In order to facilitate the breadboarding of potential systems, a
number of standard building block devices and control electronics
units have been designed. Processor boards providing a full TTL
interface and up to 24K bytes of memory have been implemented.
I/O devices and their associated control electronics which have been
built include I/O typewriters, tape cassettes, floppy discs, dot matrix
TV displays, video data terminals, keyboards, and various communi-
cations controllers for teletypewriter equipment and acoustic coupled
data terminals.

Figure 4 illustrates two typical microprocessor systems using
some of the above mentioned hardware. Figure 4a shows a Word
Processing System employing the COSMAC processor and 4K bytes
of main memory storage. The system uses inexpensive audio cassette
tape recorders as mass storage units as well as for voice system
operating instructions. The Shift Register CE is used as an intermedi-
ate storage device for on line data manipulation. The hexidecimal
keyboard is used for entering initialization parameters into the

system, and the I/O typewriter is used as a hard copy, manual
input/output device. The system has been programmed to generate
and edit form letters for storage on the tape drives as well as to
process the form letters using a. recorded mailing list. Programs have
been generated to process payroll information and to print pay-
checks. And, an inventory control and accounts receivable processing
system has been investigated.

Figure 4b illustrates a Leased Channel Communications Control
System which is presently undergoing testing in an international
telecommunications environment. The system, consisting of a
COSMAC processor with memory, a floppy disc, and two communi-
cations controllers, was designed for ‘“turnkey” operation. Both
communications controllers are capable of operating in half or full
duplex modes. The system is capable of performing the answerback
and playback operations required by the telecommunications net-
work line procedures as well as code and speed conversion. The disc
unit is used to provide non-volatile storage space for a message store
and forward feature and for the storage of all programs. A message
forwarding priority weight may be assigned to all messages so that
the sequencing of the forwarded messages is independent of the
message input sequence. B

All of the experimental systems which have been developed to
date using the COSMAC microprocessor have shown that it can be
used to effectively implement low cost data processing systems.

SHIFT

REGISTER KEVZ‘;ARD

T

HEX
KEY-
B8OARD

TWO AUDIO CASSETTE
DRIVES

4A. COSMAC Word Processing System

FLOPPY DISC COMMUNICATIONS ] | COMMUNICATIONS
CE CE1t CEll

FLOPPY
bisc COMMUNICATIONS LINES

4B. COSMAC Leased Channel Communications System

Figure 4. Two Typical COSMAC Systems

CONCLUSION

The COSMAC microprocessor is an eight oit, parallel, general
purpose computing element designed for use in the implementation
of low cost digital systems. Every effort has been made to make it
easy to program and inexpensive to interface.
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The COS/MOS technology with which the LSI processor is
implemented provides a number of features which are important in
the design of low cost systems. COS/MOS provides a high noise
immunity, so, the processor can operate in electrically hostile
environments and can be powered by unregulated power supplies.
The processor has a wide operating voltage range and the internal
voltage supply is separated from the 1/O voltage supply so that the
processor may operate at maximum speed while interfacing to
various external circuit technologies, including TTL. Only a single
phase systém clock is required; and, the processor power consump-
tion is minimal.

COSMAC possesses a built-in matrix of sixteen 16-bit registers
and a unique instruction set chosen to make efficient use of main
memory. The Register Matrix may be used to' provide multiple
program counters as well as address and data storage. Unlimited
subroutine nesting is possible and the instruction set facilitates the
use of interpretive subroutine macro instructions. A large amount of
support software has been generated to aid the user in programming
and debugging his system software.

The COSMAC Input/Output interface was designed to provide
intimate control of I/O devices so that overall system complexity and

cost can be reduced. A Direct Access I/O capability is included in the
processor structure to enable the high speed transfer of blocks of
data without program monitoring.

In short, COSMAC has been designed to help minimize the cost
of intelligent digital systems.
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RCA DEVELOPS FIRST MICROPROCESSOR

EMPLOYING PROVEN CMOS TECHNOLOGY

The first microproéessor émploying low—powef, reiiable
CMOS technology hasvbeen developed by RCA.

Standard design rules used by RCA in fabricating the
commercial CD4000A series of CMOS integrated circuits for electrohic,
digital, Qeﬁeral purpose applications are employed for the new
microprocessor, according to Gerald B. Herzog, Direqtof ofgﬁhe RCA
Laboratories Solid Stéte Technology Center in Somerville, N. J.

Thus, the two-chip unit will provide system designers
with a 1o§-power CPU_ﬁhét utilizes a‘technology with a proven
capability of sucdeésful operation in difficﬁlt noise, temperature
and power environmenfé, he added. |

| While the plans of the RCA Solid State Division for the
microprocessor chips are not completed, the chips should be avéilable
tovequipment manufécturefsvén a’sqmpling(basis this year,

Mr, Herzog said.



Because of their reliability, low-power requiremeﬁts
and simplified architecture, the microprocessor chips are expected
to be used in low-cost, high volume systems, such as process
controls and manufacturing automation, as well as in automotive
control devices, point-of-scale terminals and programmable
calculators, he stated.

Details on the chips were disclosed today (February 13)
at the International Solid State Circuits Conference (SSCC) in
Philadelphia by Dr. Robert O. Winder, Head of the RCA Solid State
Technology Center's LSI Systems Design Research Group.

Other members of the development team include
Joel Oberman, Norman Swales, and Joseph A. Weisbecker.

Dr. Winder said the architecture of the two-chip CPU
provides a 40-pin interface which simplifies the total system
design. The chips contain a total of approximately 6,000 devices
and have the most powerful input-output capability of any known
microprocessor, he stated.

| The architecture is based on an array of 16 address
pointers. Each can be used as a program counter, for data
storage or as data pointers, or to control an on-chip direct
memory access (DMA) capability. The microprocessor also has an
interrupt capability. |

An 8-bit two-way data bus interconnects the processor,
any mixture of RAM (random access memory) and ROM (read-only

memory) and péripheral devices.



When operating from a typical power supply of from 10
to 12 volts, the machine cycle time (8 clock pulses) will be
about 3 microseconds. Assuming a l-microsecond RAM, the CPU chips
will have a 6-microsecond fetch-execute time for any instruction,
a DMA rate of 333 K byte pef second, and én interrupt response
time from 3 to 9 microseconds.

Dr. Winder said that fhe deéign of the CMOS micro-
processor was completed after prototypes were interfaced with
computer terminals, TV sets, keyboards, audio cassette players,

a floppy disc, communication'lines, a minicomputer, among others.

During this 2-year period of application research, RCA
scientists developéd a software support system--for assembling

programs and checking them out.



LATE ‘NEWS TALK FOR SSCC

COSMAC ~-- A COS/MOS MICROPROCESSOR

R. 0. Winder
RCA Solid State Tech Center
Somerville, N. J.

A 2-chip COS/MOS 8-bit micrbprocessor will be
described. Its architecture emphasizes strong input-
output capabilities and minimization of external logic

needed in building up a complete microcomputer,

February 1974



COSMAC -- A COS/MOS MICROPROCESSOR

R. O. Winder

The architecture of COSMAC (COmplementary-Symmetry Monolithic-
Array Computer) provides a small but adequate instruction repertoire,
emphasizes a strong input/out capability, and is organized so as to
minimize the amount of external logic needed to build up a complete
computer. Its heart is a 16x16 scratch pad; any reference to memo;y
is made via one of these 16 registers. Addressable memory is 65,536
8-bit bytes. An 8-bit two-Way data bus interconnects the processor,
any mixture of RAM and ROM, and the peripheral devices. The CPU
presents a 40-pin interface to the system: the 8-bit data bus,
eight lines for multiplexing out 16-bit addresses to RAM or ROM,
clock, reset, and load controls, two signals to control memory read
and write, three lines to signal the state of the CPU (fetching or
executing an instruction, responding to interrupt or direct-memory-
access request), two time pulses per machine cycle for peripheral
logic use, four lines driven during execution of the input/output
instruction, four external flags from the peripherals, three
request lines respectively for interrupt, DMA in, DMA out, and three
power lines, one of which defines the interface high signal level.

Three of the 16 registers are used as DMA pointer, interrupt
servicing program counter, and general stack pointer, but otherwise
the registers‘are freely usable for data storage (two independent
bytes eéch), address pointers, and program counters. Instructions
are provided to move data between the registers, 8-bit accumulator,

memory, and the peripherals, to increment or decrement registers, to
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do simple 8-bit logic and arithmetic, for conditional branch, and
for servicing interrupts and the interrupt mask.

Devices such as TV sets, keyboards, audio cassette players,
typewriters, a floppy disc, communication lines, a minicomputer,
etc. have been interfaced with COSMAC, exploring applications in
entertainment, education, small-business functions, store-and-
forward controllers, and others. We plan to capitalize on the
noise immunity and power supply tolerance of COS/MOS in applications
to automobile and process controi problems. A software support
system was written which provides editing, assembly, and interactive
simulate-debug facilities, on time-share.

Our experience with prototypes buildt with discrete IC's led
to some fine tuning of the architecture but has convinced us that
the architecture is quite competitive with the various micro-
processors which have been announced in the industry.

Using very conservative design rules, we have designed a
2-chip COS/MOS implementation of COSMAC. These chips are large--
almost 250 mil per side each--with 28 and 40 pins respectively.
Each requires roughly 3000 devices, including six devices per bit
of register and using no PLA. As a pair, they provide the 40-pin
interface described above, including on-chip capability of driving
one TTL load at an externally defined voltage (5 volts, normally),
but allowing a higher internal logic swing if higher speed is
required. The machine cycle (8 clock pulses) will range from about
3 microseconds to 10 microseconds depending on this internal power
level. Using the faster speed and assuming a 1 microsecond RAM,

this defines a 6 microsecond fetch-execute time for any instruction,
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a DMA rate of 333 K Byte per second, and an interrupt response
time from 3 to 9 microseconds‘(interrupts are allowed only between
complete instruction cycles).

When the logic is finalized, a l-chip version is expected to
require a chip size below 200 mil per side, usihg advanced design
rules. Our experience with support software and the proven power
of COSMAC in a wide variety of applications guarantee a mature and
well supported microprocessor. The advantages of COSMAC architecture,
together with the well known advantages.of COS/MOS technology, will
be very attractive in many of the new markeﬁs being opened up by

microprocessors.
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PRESENT PROGRAM AND FUTURE PLANS

e SAMPLE TO INTERESTED PARTIES
 PROVIDE CHIPS AND SUPPORT
e EXPLORE NEW APPLICATIONS |

e 8-CHIP SOS COSMAC

e 1-CHIP COSMAC
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