‘Programming Manual

altair 680b

Table of Contents

I. INTRODUCTION = = = = = = = = = = = = w0 0 & & page 3
II. SYSTEM DESCRIPTION - - - = - = - = ------ page 5
III. SOURCE LANGUAGE AND ADDRESSING MODES - - - - - page 7
Character Set - = - - - - = = = = o 0 o - & page 7
Fields of the Source Statement - - - - - - page 8
Addressing Modes - - - - - -~ - - - "= == page 17
Assembler Directives = - - - = - - - o oo page 25
IV. INSTRUCTION SET =« - - - - - = - - - -0 o 2. page 27
Condition Code Register Operations - - - - page 27

M6800 Instruction Set - - - = - = = = == - page 28-29
Hexadecimal Values of Machine Codes - - - - page 30
Octal Values of Machine Codes - = - - - - - page 31
Decimal Values of Machine Codes - - - - - - page 32
Condition Code Register Instructions - - - page 33
Number Systems - - - = = = = =« - - - - - . page 34
Accumulator and Memory Operations - - - - - page 38
Program Control Operations - - - - - - - - page 41
V. ARITHMETIC OPERATIONS - - - = == == = o -« page 53
Number Systems = - = = = = - - = o 2 - . . page 53
The Condition Code Register - - - - = - - - page 54
Overflow - - - - - - - m e - e - - - - = page 54
The Arithmetic Instructions - - - - - - -'- page 56
Addition and Subtraction Routines - - - - - page 61
Multiplication - - - - - -« -- -2 . page 67
Division = - - = = = = = == oo -- - page 72
VI. SAMPLE PROGRAMS - - = = = = = = = - = - - . - page 77

APPENDIX A - Instruction Set
APPENDIX B - Assembler Directives
APPENDIX C - Input/Output Information

Major portions of the Altair 680b Programming Manual have been reprinted
by permission of Motorola Semiconductor Products, Inc., copyright 1975.

2450 Alamo S.E.
Albuquerque, N.M. 87106

ph MITS, Inc. ©1976
(~4

INTRODUCTION

The Altair 680b Programming Manual describes the format
of the 680b assembly code source language and the 6800 MPU
instruction set and addressing modes.

A brief overview of arithmetic programming techniques
and some general purpose sample programs are also included.

This manual is in no way intended to be a beginning
course in computer programming.

/———Jir microprocessing /1____

RSB] unit S~ ,,_‘}

memory

CIX-aC 1 LI-¥-§.]

I

d
a
t
—
b
u
s
input/output :
devices

Figure 2-1

Microcomputer System Block Diagram

7 [

E ACCUMULATOR A
7 0
ACCUMULATOR 8
16 0
l X J INDEX HEGYISTER
15 0
I PC J PROGRAM COUNTER
16 0
r sp] STACK POINTER

5 [)
[T Tn]z]v[c] conoiTion copes recisTeR

Figure 2-2. Programming Model of M6800

I1 SYSTEM DESCRIPTION

In order to program a computer in machine language or assembly
code, it is necessary to have at least a block diagram level under-
standing of the computer hardware.

A general purpose microcomputer (see figure 2-1) consists of a
microprocessing unit (MPU), a memory, and a number of input and out-
put devices. These components are linked together by an address bus
and a data bus.

The computer memory is used to store instructions and data for use
by the MPU. In the 680b, the memory is organized into 8 bit words
called bytes. Each memory byte is assigned a unique 16 bit address.
This address is used by the MPU to gain access to the contents of a
particular memory byte.

Input and output devices, such as Teletypes, CRT Terminals, and
paper tape readers are used for communication between the computer and
the external world. Each I/0 device in a 680b system has one or more
unique 16 bit addresses assigned to it.

The MPU is responsible for controliing the microcomputer system
and performing all arithmetic and logic operations. The MPU must be
told what steps to execute to perform a given task. This is accom-
plished by storing a program into the computer's memory. Once a program
is stored in memory, a register in the MPU called the Program Counter
(PC) is loaded with the address of the memory byte which contains the
first instruction of the program. When the computer is put into the run
mode, the MPU puts the address contained in the PC on the address bus
and reads the contents of that location via the data bus. The instruc-
tion that has been read is executed after the PC is incremented to point
to the next instruction.

This sequence is repeated until the processor is halted.

The 680b MPU is a Motorola M6800 which operates on 8-bit binary
numbers presented to it via the data bus. A given number (byte) may
represent either data or an instruction to be executed, depending on
where it is encountered in a program. The M6800 has 72 unique instruc-
tions, however, it recognizes and takes action on 197 of the 256 possi-
bilities that can occur using an 8-bit word length. This larger number
of instructions results from the fact that many of the executive in-
structions have more than one addressing mode.

These addressing modes refer to the manner in which the program
causes the MPU to obtain its instructions and data. The programmer must
have a method for addressing the MPU's internal registers and all of the
external memory Tlocations. The complete executive instruction set and
the applicable addressing modes are summarized in Figure 4-1, however,
the addressing modes will be described in greater detail prior to intro-
ducing the instruction set in a later section. A programming model of
the M6800 is shown in Figure 2-2. The programmable registers consist
of: two 8-bit Accumulators; a 6-bit Condition Code Register; a Program
Counter, a Stack Pointer, and an Index Register, each 16 bits long.

ITT SOURCE LANGUAGE & ADDRESSING MODES

While programs can be written in the MPU's language, that is, bi-
nary numbers, there is no easy way for the programmer to remember the
particular word that corresponds to a given operation. For this reason,
instructions are assigned a three letter mnemonic symbol that suggests
the definition of the instruction. The program is written as a series
of source statements using this symbolic language and then translated
into machine language. The translation can be done manually using an
alphabetic Tisting of the symbolic instruction set such as that shown in
Appendix A. More often, the translation is accomplished by means of a
special computer program referred to as an assembler.

The source language for the M6800 microprocessing unit is built
around 72 mnemonic instructions and 12 assembler directives. Section
ITI deals with the details of the character set and format of the source
Tanguage.

CHARACTER SET

The characters used in the source language for the 680b assembler
form a sub-set of ASCII (American Standard Code for Information Inter-
change, 1968). The ASCII Code is shown in Figure 3-1. The following
characters are recognized by the assembler.

1. The alphabet A through Z
2. The integers 0 through 9
3. Four arithmetic operators:
+-*)
4. Characters used as special prefixes:
(pounds sign) specifies the immediate mode of addressing
$ (dollar sign) specifies a hexadecimal number
@ (commercial at) specifies an octal number
% (percent) specifies a binary number
' (apostrophe) specifies an ASCII literal character
5. Characters used as special suffices:
B (letter B) specifies a binary number
H (letter H) specifies a hexadecimal number
0 (letter 0) specifies an octal number
Q (letter Q) specifies an octal number
6. Four separating characters:
SPACE
Horizontal TAB
CR (carriage return)
, (comma)
The use of horizontal TAB is always optional, and can be replaced
by SPACE.
7. A comment in a source statement may include any characters with
ASCIT hexadecimal values from 20 (SP) through 5F (__).

8. In addition to the above, the assembler has the capability of
reading strings of characters and of entering the corresponding 7-bit
ASCII code into specified locations 1n the memory. This capability is
provided by the assembler directive FCC (See Appendix B). Any charac-
ters corresponding to ASCII hexadecimal values 20 (SP) through 5F ()
can be processed. This kind of processing can also be done, for a sin-
gle ASCII character, by using the immediate mode of addressing with an
operand in the form "#C".

BITS4thru6é — O 1 2 3 4 5 6 1
(0 NUL DLE SP 0 @ P P
1 SOH DCI ! 1 A Q a g
2 STIX D2 " 2 B R b r
3 ETX DC3 # 3 C€C S ¢ s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
BITSOthru3< 6 ACK SYN & 6 F V f v
7 BEL ETB ' 71 G W g w
8 BS CAN (8 H X h «x
9 HT EM) 9 1 Y i |y
A LF SUB * : 1 Z j z
B VI ESC + ; K [k {
c FF FS , < L | 1 |
D CR G - = M] m }
E SO RS > N (na =~
F s U |/ ? O — o DE

s

Figure 3-1 ASCII Code

FIELDS OF THE SOURCE STATEMENT

A source statement includes from one to four fields. From left to
right, the four fields are:

(1) label (2) operator (mnemonic) (3) operand (4) comment

The comment is optional, and may be used in most source statements.
Comments are intended for the convenience of the programmer, and to fa-
cilitate documentation of the program. A label is required for some
statements which are involved in the definition of symbols and, in some
cases, at the destinations of branches and jump instructions. An oper-
and field may or may not be present depending on the nature of the
operator. The mnemonic operator must be present in any statement ex-
cept when the statement consists only of a comment.

With one optional exception (explained below), the successive
fields within a statement are separated by,

either: one or more SPACE characters

or: horizontal TAB
The use of the horizontal TAB is hardware-dependent in that its avail-
ability will depend on the particular type of terminal in use. The
SPACE bar may always be used rather than the TAB key.

CAUTION

A SPACE in the first character position of a source statement

is used to indicate that a label is not included in the state-
ment. A label, if used, must begin in the first character pos-
ition of the source statement. It follows from the above that,
when typing a source program into a file in which the statements
are identified by 1ine numbers, there will be only one space
following the 1line number if the statement includes a Tlabel.

Two or more spaces following the Tine number will indicate that
a label is not used.

The exception to the foregoing rule relating to SPACE or hori-
zontal TAB between the elements of a source statement applies
to operators with dual addressing in the operand field (indi-
cated by the column headed "Dual Operand" in Figure 3-2 and

to certain other operators if they are functioning in the

"accumulator mode" of addressing (indicated by the column
headed "ACCX" in Figure 3-2. In these cases, the first
character of the operand field is either A or B (indicating
accumulator A or B), and the second character is a SPACE.
The programmer then has the option of omitting the SPACE
between the operator and the operand field. This results

in an apparent four-character format, as for example "ADCA",
"ASRB", "STAA", "TSTB", and similarly.

Label Field

An asterisk (*) in the first character position of a statement
causes the entire statement to become a comment. Otherwise, the com-
ment will be preceded in the statement by one or more fields of the
other three types, and the comment will occupy the last field in the
statement.

Except in some cases when it is used with the mnemonic operator
EQU (see below) a label always corresponds to a numerical address in the
programmable system. It provides a means of referring to that address
by using a symbol identical with the label. The address represented by
the label (or symbol) may be that of an instruction in the machine code
or of a location in the memory where data is stored.

JusIeyu)
pexspuj
popusix3
1weug
simpowiu|
X0V

(putiedo 1enq)

sanmey
Jusseyu]
pexopuy
popuaix3
1810
sepoww|
X209V

{pusiedQ {2nQ)

etwo0sssssnosseselnnnoennNnoesesNaunaNNOITTOD
N O OTODWNOONN OGN 6 ONN 00O SOOI NGOG IN SO0
CeIMATUVNOD 6¢ ¢ 00D SV OT CEINWVWOTOOOOEOSIDO O

0 0 00 8MYT G0 O6(MN E 080880 8MSEITNINMNMOGEOSEGEOSSDSOTOES

00860 O0NNMMOOIOIN OGS 0000 OFNOS QOB OIEOINSCOSOOSIEOSIEOSESTDOOLS

N0 0SS e P OINNOG®EITTINNOSG®OGOOSOOSIOOISIOEOIOLOIOSEOINGSGSSS

0000 00TTLTYITT OITXTLTLTTITOTT 0000000000000
NS0 COOCEOEOSGECEOGOEOEECEESEOEOINOIOSOENOSELOESITINNNOINSGSOINOOITT O
SN 00 0 000N G0 0000 00000t ON O OD

PTTTOWO 000 00T 0060000060000 TONHOIDOS ST

eMMMesssessIMOe e e0 00 s00ssMmeT o

BN 060060600 000NO8 060000000000 O0INOIMSSES NN

® @O ONCN © 0 000608 000606060060 068 060N INSOINGS OO
o o X x x x
<O _ITOV W _ =W ICTONLO L3xqONXE
BWDNSBCCHGGHWESHMNmnsmvswLmWMOPMEEEo
CCACCCCONDDDODDDRDOVTVDDOO000000O00OQW

Interrupt time is 12 cycles from the end of

NOTE:

the instruction being executed, except fotiowing

a WAL instruction. Then it is 4 cycles.

%]

¥

1=
o~
—

=

=]
—
-

3

(S

[J]

x
(%3]
©

=

<

(7]

(]
©

o —
=uwu

(4]

Oyr—

=5
o

n O

%]

[]

- C
-
T o
< O

1]
=

(=]
— c
+

(%)

g
+ E

v

e -
——
N

1

Figure 3

10

The following rules apply to labels:

1. A label consists of from 1 to 6 alphanumeric characters.

2. The first character of a label must be alphabetic.

3. A label must begin in the first character position of a
statement. .

4. A11 labels within a program must be unique.

5. A label must not consist of any one of the single char-

acters A, B, or X. (These characters are reserved for
special syntax, and refer to "accumulator A", "accumu-
lator B", and "index register", respectively.)

Labels are used in source programs in the following cases:

1.

A label may be included in any statement which is the destina-

tion of:

a. Any of the conditional branch instructions: BCC BCS BEQ
BGE BGT BHI BLE BLS BLT BMI BNE BPL BVC BVS

b. The unconditional branch instruction: BRA, or

c. The branch to a subroutine: BSR

Correspondingly, the operand field of the branch instruction

would consist only of a single symbol which would be identical

with the label at the destination. 1In the case of the instruc-

tion BSR, the symbol in the operand field, identical with the

label at the destination, could be regarded as, in effect, the

name of the subroutine.

A label may be included in any statement which is the destina-
tion of either of the instructions:

JMP (unconditional jump)

or JSR (jump to subroutine)
when the instruction is being used in the extended mode of
addressing.

Correspondingly, when used in the extended mode of addressing,
the operand field of either of the instructions JMP and JSR
would consist only of a symbol which would be identical with
the label at the destination. For JSR, this could be regarded
as, in effect, the name of the subroutine.

A label would be included in an assembler directive which
specifies the location in memory corresponding to a symbol.
This applies only to the directives:

FCB FCC FDB RMB
When used for this purpose, the label in the assembler dir-
ective would be identical with the corresponding symbol.

A label must be used in a statement which includes the assem-
bler directive EQU. The label will be identical with the sym-
bol which the EQU statement is defining.

5. In other cases, a label may be used in any executable instruc-
tion at the option of the programmer. Among the assembler
directives EQU must always be written with a label; each of
FCB, FCC, FDB, and RMB, may have a label; any other of the
assembler directives must not be written with a label.

(For further details on the assembler directives see Appendix
B.)

Operator Field

The mnemonic operators recognized by the assembler include 72 execu-
table instructions. Each instruction is translated by the assembler into
one to three bytes of machine code. The remaining mnemonic operators are
assembler directives, of which four (FCB, FCC, FDB, and RMB) are translated
into one or more bytes of machine code. The other assembler directives
control the overall assembly process and are not translated individually
into machine code.

A functional classification of the mnemonic operators is shown in
Figure 3-3. An alphabetical 1isting of the executable instructions is
given, with brief definitions, in Figure 3-4.

Executable Instructions

Each of the executable instructions recognized in the source lan-
guage consists of three alphabetic characters. (However, as when the
first operand in the operand field is either A or B, the programmer has
the option of joining the character A or B to the operator, which re-
sults in an apparent four-character format.)

Figure 3-2 gives complete information stating which modes of ad-
dressing can be used with the different executable instructions. The
table also shows the execution times in clock cycles.

The assembly of an executable instruction results in from one to
three bytes of machine code, depending on the addressing mode. This
information is summarized in Figure 3-5.

Detailed definitions of the executable instructions are given in Ap-
pendix A.

12

1. Operations on 8-Bit Registers:

Two-operand arithmetic
Single-operand arithmetic

Shifts and Rotations
Logic Functions
Load and Store
Transfers

QmPmoUNw»

II. Jump and Branch Control:
A. Conditional Branch

B. Unconditional Branch and Jump .
C. Control of Subroutines
D. Control of Interrupts

ABA ADC ADD SBA SBC SUB
CLR DAA DEC INC NEG

Comparisons and Tests CBA CMP TST

ASL ASR LSR ROL ROR
AND BIT COM EOR ORA

BCC BCS BEQ BGE BGT BHI
BLE BLS BLT BMI BNE BPL
BVC BVS

BRA NOP JMP

III. Control of Index Register and Stack Pointer:

A. Index Register
B. Stack Pointer
C. Transfers

IV. Control of Condition Codes Register:

A. BitControl
B. Byte Transfers

V. Assembler Directives

Figure 3-3 Functional Classificati

13

END EQU FCB FCC FDB MON
NAM OPT ORG PAGE RMB SPC

on of the Mnemonic Operators

ABA Add Accumulators INS Increment Stack Pointer

ADC Add with Carry INX increment Index Register

ADD Add

AND Logical And jgg Jump s .

ASL Arithmetic Shift Left Jump to Subroutine

ASR Arithmetic Shift Right LDA Load Accumulator
LDS Load Stack Pointer

h if Cl

ggg g:::gh :f gz:z Seetar LDX Load Index Register

LSR Logical Shift Right

BEQ Branch if Equal to Zero
BGE Branch if Greater or Equal Zero NEG Negate

BGT Branch if Greater than Zero NOP No Operation
BHI Branch if Higher .
8IT Bit Test ORA Inctusive OR Accumulator
BLE Branch if Less or Equal PSH Push Data
BLS Branch if Lower or Same PUL Pull Data
BLT Branch if Less than Zero ROL Rotate Left
BMI Branch if Minus ROR Rotate Right
BNE Branca ’: slo' Equal to Zero AT Return from Interrupt
BPL Branch if Plus AT
BRA Branch Always S Return from Subroutine
BSR Branch to Subroutine SBA Subtract Accumulators
BVC Branch if Overflow Ciear SBC Subtract with Carry
BVS Branch if Overflow Set gEIC ge' ICErrv y
1 Int: t k
CBA Compare Accumulators SEV Szt Sveerrrf‘llc‘v)w as
cLe Clear Carry STA Store Accumulator
CLI Clear Interrupt Mask STS Store Stack Register
CLR Clear STX Store Index Register
CcLv Ciear Overflow suB Subtract
CMP Compare SWI ftware Int ¢
COM Complement Software Interrup
CPX Compare Index Register TAB Transfer Accumulators
A) TAP Transfer Accumulators to Condition Code Reg.
DAA Decimal Adjust TBA Transfer Accumulators
DEC Decrement) TPA Transter Condition Code Reg. to Accumulator
DES Decrement Stack Pointer TST Test
DEX Decrement Index Register TSX Transfer Stack Pointer to index Register
EOR Exclusive OR TXS Transter Index Register to Stack Pointer
INC Increment WAI Wait for Interrupt

Figure 3-4 Executable Instructions -- Alphabetic List

[~

NUMBER OF BYTES

ADDRESSING MODE OF MACHINE CODE
Inherent 1
Accumulator (single operand) 1
Relative 2
Direct 2
Indexed 2
Immediate: 2

1. A1l instructions except CPX, LDS and LDX 2

2. Instructions CPX, LDS and LDX 3
Extended 3

Figure 3-5
Operand Field

The kind of information placed in the operand field depends on the
particular mnemonic operator. For the 72 executable instructions the
microprocessor uses various modes of addressing for obtaining the oper-
ands and saving the results of execution. The addressing mode is deter-
mined by the mnemonic operator combined with the information in the oper-
and field. The addressing modes are summarized in Figure 3-2.

The assembler recognizes numbers, symbols and expressions in the
operand field. Dual operand instructions require either of the single
characters A or B as the first operand.

Numbers

Numbers are accepted by the assembler in the following formats:

Number (decimal)

$ Number (hexadecimal)
Number H (hexadecimal)
@ Number (octal)
Number 0 (octal)
Number Q (octal)

% Number (binary)
Number B (binary)

15

where Number is a positive integer. A prefix "$", "@", or "%" instructs
the assembler to interpret the number as hexadecimal, octal, or binary,
respectively. A suffix of "0" or "Q" indicate octal numbers while the
suffix "H" indicates hexadecimal, and the suffix "B" indicates binary.
When none of these prefixes or suffixes is used, the number is assumed
to be decimal.

In the case where the prefix is "$" and the last character is "B"
the assembler interprets the number as hexadecimal.

Symbo1s
Symbols when used in the operand field follow these rules.

1. A symbol must not be any of the single characters A, B, or X.

2. Subject to rule (1), a symbol may consist of from 1 to 6
alphanumeric characters, of which the first is alphabetic.

3. The single character "*" is a symbol which represents the
program counter.

The special symbol "*" represents the program counter. Its value is,
therefore, equal to the numerical address of the first byte of machine
code which results from the assembly of any source instruction which con-
tains "*" in the operand field.

The single characters A, B, and X are reserved for special use in
the source program, to represent accumulator A, accumulator B, and the
index register. The single characters A or B must be used with dual
operand instructions and may be used to indicate accumulator addressing.
The single character X is indication of indexed addressing.

A11 other symbols must be defined in the source program. There are
three ways of defining a symbol, as follows:

1. An executive instruction in the source program may include a
label indentical with the symbol being defined. The value of
the symbol is then the numerical address of the first byte of
machine code which results from the executive instruction which
includes the label.

2. One of the assembler directives FCB, FCC, FDB, or RMB may be
written with a label identical with the symbol being defined.
The value of the symbol is then the numerical address of the
first byte of machine code which results from the assembler
directive (FCB, FCC, FDB, or RMB) which includes the label.

3. The symbol may be defined by using the assembler directive EQU.
The mnemonic operator "EQU" is preceded by a label identical
with the symbol being defined. The value of the symbol, re-
presented by the label, is that of the operand which follows
the mnemonic operator "EQU". The operand may be a number,
another symbol,or an expression.

16

Expressions

An expression is a combination of symbols and/or numbers being
separated one from the next by one of the arithmetic operators (+, -,
*s or /).

The assembler evaluates expressions algebraically from left to
right without parenthetical grouping, there being no heirarchy of pre-
cedence among the arithmetic operators. A fractional result, or inter-
mediate result, if obtained during the evaluation of an expression, will
be truncated to an integer value. The use of expressions in the source
language does not imply any capability of the microprocessor to evaluate
those expressions, since the expressions are evaluated during assembly
and not during execution of the machine language program.

Evaluation of Symbols and Expressions

The assembler must complete the numerical evaluation of symbols and
expressions in two passes through a source program. Reflecting the two-
pass characteristic of the assembly process, only one level of forward
referencing is permitted in the use of symbols or expressions in the
operand field of source statements.

Comments Field

A comment may be included in a source statement at the option of
the programmer. The comment, if present, may contain any characters
corresponding to ASCII hexadec1ma1 values 20 (SP) through 5F (__).
Source statement comments do not affect the machine code which results
from the assembly of a program. They are ignored by the assembler
except for being included in the program listing.

Comments may be used in source programs for aiding comprehension of
the program, and for purposes of checkout and documentation.

ADDRESSING MODES

The assembler scans the operator and operand to determine the pro-
per addressing mode. The addressing modes are:

Inherent Addressing
Relative Addressing
Immediate Addressing
Indexed Addressing
Accumulator Addressing
Extended Addressing
Direct Addressing

Dual Addressing

Eleven of the executable instructions require addressing of two
operands in the operand field. These instructions are indicated in
Figure 3-2 by the column headed "Dual Operand". For all of these oper-
ators the first operand must be either accumulator A or accumulator B.
This is specified respectively by A or B as the first character in the
?perand)field, the second character in the operand field being a SPACE

OR TAB).

For dual addressing the specification of the first operand (either
A or B) is separated from that of the second operand by one or more
SPACE characters (or alternatively by TAB).

The second operand is specified in the operand field in accordance
- with the rules for immediate, direct, extended, or indexed addressing
(as defined subsequently); depending on which modes of addressing are
valid for the individual operators.

(For the mnemonic operators which employ dual addressing it is
permissible to omit the SPACE between the operator and the operand
field.)

Accumulator Addressing (single operand)

Thirteen of the operators address a single operand from the operand
field and can so address either accumulator A or accumulator B in the
microprocessing unit. These operators are indicated by the column headed
"ACCX" in Figure 3-2. This mode of addressing is specified by writing an
operand field consisting only of the single character A or B, corres-
ponding to accumulator A or accumulator B. (It is then permissible to
omit the SPACE (or TAB) between the operator and the operand field, for
this type of addressing.)

For this type of addressing the assembly of a source instruction
results in one byte of instruction in the machine language.

(For operators PUL and PSH, the accumulator mode is the only valid
mode of addressing. The remaining eleven operators capable of this mode
of addressing can alternatively be used with extended or indexed addres-
sing.)

Inherent Addressing

In many cases the mnemonic operator itself specifies one or more
registers which contain operands or in which results are saved. For
example, the operator ABA requires two operands which are located in
accumulator A and accumulator B of the microprocessor. The operator
also determines that the result of execution will be saved in accumu-
Tator A.

18

For some executable instructions, all of the information which may
be required for the addressing is contained in the mnemonic operator,
and no operand field is used in the source statement. There are 25 such
instructions. These are indicated by the column headed "inherent" in
Figure 3-2.

Assembly of this type of source instruction results in only one
byte of machine language code. (Some other operators which contain ad-
dressing information inherently in the mnemonic code also require further
addressing or operand information which is then placed in an operand
field. Examples are the operators CPX, LDS, LDX, STS, and STX.)

Immediate Addressing

The operators with which the immediate mode of addressing is permis-
sible are indicated by the column headed "immediate" in Figure 3-2. This
mode of addressing is selected by beginning the specification of the
corresponding operand (in the operand field of a source statement) with
the pound character "#".

With the immediate mode of addressing, the operand field of the
source statement either contains the actual value of the operand, or
it includes a symbol or an expression which has an algebraic value equal
to the value of the operand. The operand may be specified in accordance
with any of the following formats:

Number

Symbol

Expression
#'C

In the first three of these alternate forms the assembler will find
or compute a numerical value of the operand. For any executive instruc-
tion in the immediate mode of addressing except CPX, LDS, or LDX, the
numeric value must be an integer from O to 255 (decimal). For the oper-
ators CPX, LDS, or LDX, any value from 0 to 65535 (decimal) is valid.

In the last of the alternative forms, #'C, the apostrophe instructs
the Assembler to translate the next character into the corresponding 7-
bit ASCII code. The ASCII code so obtained is then the value of the
operand. The single character "C" can be any character of the ASCII
character set with hexadecimal value from 20 (SP) through 5F ().

For the immediate mode of addressing, the assembler inserts the
actual value of the operand into the machine code. Except for the three
operators CPX, LDS, and LDX an instruction in the immediate mode is as-
sembled into two bytes of machine code, and the value of the operand is
entered in the second byte. When it is a number, the operand is entered
in the memory in unsigned 8-bit binary code. When it is an ASCII char-
acter, the corresponding 7-bit ASCII code applies, using bits 0-6, and
bit 7 is set to zero.

19

ar

For the three operators CPX, LDS, or LDX, used in the immediate
mode, the source statement is assembled into three bytes of machine
code. The numerical operand, which can have any value from O through
FFFF, will be entered in the second and third bytes. The second byte
will contain the most significant part of the operand, the third byte
will contain the least significant part of the operand. Both parts are
entered into the respective bytes of the memory in unsigned 8-bit bi-
nary code.

The operators CPX, LDS, or LDX, in the immediate mode, are not
normally used with an operand in the format "#'C". However, in such a
case, the assembler would place the ASCII coded character "C" in the
third byte of the machine code corresponding to the source instruction.

When the immediate mode of addressing is used, the numerical ad-
dress is in effect that of the second byte of machine code which results
from assembly of the source instruction. Data flow for the immediate
addressing mode is shown in Figure 3-6.

MPU MPU
: ACCA :
RAM RAM
TN TN Figure 3-6 Immediate Addressing
PROGRAM PROGRAM
MEmoRY MEMORY Mode Data Flow
/—\l ~—
PC INSTR PC = 5002 LDA A
DATA . 25
%
GENERAL FLOW EXAMPLE

Relative Addressing

For the relative addressing mode to be valid, there is a rule which
1imits the distance in the machine language program from the branch in-
struction to the destination of the branch. The rule which applies to
the relative addressing mode is that the address of the destination of
the branch must be within the range specified by:

(PC +2) - 128 < D < (PC + 2) + 127

where:
PC = address of the first byte of the branch instruction

D = address of the destination of the branch instruction.

When it is desired to transfer control beyond the range of thg
branch instructions, this can be done by using JMP (unconditional jump)
or JSR (jump to subroutine). These instructions do not use the relative
mode of addressing.

20

*
[

The assembler translates a branch instruction into two bytes of
the machine code. The second byte contains a relative address. This
is stored as a number in 8-bit, two's complement, binary form, with
decimal value in the range from -128 to +127. These numbers corres-
pond to the limits of the range of a branch instruction, as described
above.

The relationship between the relative address and the absolute
address of the destination of a branch instruction is expressed by:

D=(PC+2)+R
where:
PC = address of first byte of the branch instruction
D = address of the destination of the branch instruction
R = the 8-bit, two's complement, binary number, stored in the second
byte of the branch instruction.

The relative addressing mode is available only to the conditional
branch instructions, the unconditional branch instruction BRA, and the
branch to subroutine BSR. None of these source instructions can use
any other mode of addressing. The three-character mnemonic instruction
is, therefore, sufficient to determine for the assembler when the rela-
tive mode of addressing will be used. An example of the data flow for
the relative addressing mode is shown in Figure 3-7.

Indexed Addressing

A column of Figure 3-2 indicates the instructions for which indexed
addressing is valid.

With this mode of addressing, the numerical address is variable and
dependent on the contents of the index register. The current address is
obtained whenever it is required during the execution of a program, rat-
her than being pre-determined by the assembler as it is for the other
addressing modes. The operand field of the source statement contains
a numerical value which, when added to the contents of the index register
during execution of the program, will provide the numerical address.
Alternatively the operand field may contain a symbol or an expression
which the assembler is able to replace by the value which is to be added
to the contents of the index register. An example of the indexed ad-
dressing mode is shown in Figure 3-8.

For indexed addressing the data for obtaining the numerical address
may be written in any of the formats:

X

X

Number, X
SymboT, X
Expression, X

21

MPU MPU
< HINZVC '<
RAM RAM
A
PROGRAM PROGRAM
MEMORY MEMORY
pcl InsTR _KC
OFFSET PC = 5008 BEQ <:__
(PC + 2) INEXT INSTR 15
V\c PC = 5010 [NEXT INSTR
PC+2)+
(orFseTy JNEXT INSTR
PC = 5025 [NEXT INSTR
—— ———

Figure 3-7 Relative Addressing Mode Data Flow

MPU MPY

é ACCB

I !!X

RAM RAM

ADDR = INDX
Al = K
+ OFFSET DATA DDR = 405 59
PROGRAM PROGRAM
MEMORY MEMORY
PC INSTR PC = 5006

OFFSET

il

OFFSET < 255
GENERAL FLOW EXAMPLE

Figure 3-8 Indexed Addressing Mode

22

The single character "X" informs the assembler that the indexed mode is
to be used, the character "X" being reserved to denote the index register.

The format "X", when used alone, instructs the assembler that the
address of the operand is identical with the contents of the index regis-
ter. (This format has the same effect on the assembly as if "0,X" had
been written.)

. If a symbol or an expression is used rather than a number, the as-
sembler will find or compute a numerical value of that symbol or expres-
sion. The source program must then include other statements which define
a numerical value for the symbol or which enable the assembler to compute
a numerical value for the symbol or expression. Only values from zero

to FF (hexadecimal) are valid. This value is added to the contents of
the index register during execution to obtain the numerical address as
shown in the following formula:

D = numerical value + X
where
X = contents of index register
D = numerical address

For indexed addressing the source instruction is translated into two
bytes of the machine code. The second byte contains the number, in un-
signed 8-bit binary form, which is added during execution of the instruc-
tion to the contents of the index register. The number thus obtained is
the numerical address (in accordance with the foregoing formula).

Direct and Extended Addressing

For direct addressing the source instruction is translated into two
bytes of machine code. The second byte will contain the address in un~
signed 8-bit binary form.

For extended addressing the source instruction is translated into
three bytes of machine language. The second of these bytes will contain
the highest 8 bits of the address. The third byte will contain the low-
est 8 bits of the address. The contents of the second and third bytes
will both be coded in unsigned 8-bit binary form.

For both direct and extended addressing, the address, which is
placed by the assembler into the second or the second and third bytes of
the machine code, is the absolute numerical address.

As may be seen in Figure 3-2, there are several instructions for
which the extended mode of addressing is valid but the direct mode is
not. For these instructions, when using any of the following formats,

Number

Symbo1

Expression
the assembler will select the extended mode of addressing whatever may
be the value of the numerical address. The source statement will be
translated into three bytes of the machine code.

23

For those instructions which may use the direct mode of addressing
as well as the extended mode, the assembler selects the mode according
to the following rule: The assembler will select direct addressing if
the numerical address is in the range from zero to 255 (decimal) and
will select extended addressing if the numerical address exceeds 255
(decimal). Examples of the direct and extended addressing modes are
shown in Figures 3-9 and 3-10.

MPU MPU
: ACCA :
RAM RAM
ADDR | DATA < ADDR = 100 35 K
PROGRAM PROGRAM
MEMORY MEMORY
pc| INSTR PC=5004 | LDAA
ADDR 100
ADDR = 0 £ 255
GENERAL FLOW EXAMPLE

Figure 3-9 Direct Addressing Mode Data Flow

MPU MPUY
: ACCB :
RAM RAM
ADDR | DATA <: ADDR =300 45 <:
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC=5006| LDAB
[
ADDR e 300 et
ADDR
ADDR > 256
GENERAL FLOW EXAMPLE

Figure 3-10 Extended Addressing Mode Data Flow
24

ASSEMBLER DIRECTIVES

The assembler directives allow the programmer control of the as-
sembly of the executive instructions into machine code, including con-
trol of the allocation of memory, and assignment of values to data,
when applicable. The assembler directives also provide for control of
the sequencing of source programs through the assembler, and for con-
trol of the format of the assembler output.

A functional classification of the assembler directives is given
below:)

CODE SUMMARY DEFINITION FUNCTION

ORG Assign origin of program counter Defines the numerical
address of the first byte
of a subsequent segment of
the coded program.

EQU Equate a symbol to an operand Equates a symbol to a nu-
merical value, another
symbol, or an expression.

FCB Form constant byte Assign values and

FCC Form constant characters addresses of data, and

FDB Form double constant byte assign addresses of

RMB Reserve memory bytes scratch areas of memory.

END Define end of source program Control the sequencing

MON Return to console of source programs
through the assembler.

NAM Name the program or insert text Format control

OPT Assembler control options (Source program and/or

PAGE Move paper to top of form assembler 1isting)

SPC Vertical spacing of program 1isting

Assembler Directives - Operand Formating

Detailed definitions are shown in Appendix B. The formats of the
assembler directives operand field are summarized below:

25

FCB (2) EQU (1) FcC END

FDB (2) ORG (1) NAM MON
RMB (1) SPC (1) oPT PAGE
L Special Format- No
ting Rules Operand
Number
Symbo1 (see details of (Operand field
Expression the assembler dir- is left blank or
ectives in Appendix will be treated by
B.) the ascembler as a
comment..)

Notes: (1) Only one operand.
(2) May have more than one operand, separated by
commas .

Labels Used with Assembler Directives

A label must be included in any source statement which includes
the assembler directive "EQU". The label must be identical with a
symbol used elsewhere in the source program. The "EQU" directive is
used to define the symbol, directly or indirectly.

The significance of the label, in this case depends on that of
the symbol with which it is identical. It can represent a numerical
address, or data, or neither of these. In the latter case the label,
and the corresponding symbol, would represent an algebraic quantity
which appears in one or more expressions in the source program.

A label may be included in any source statement which includes any
of the assembler directives FCB, FCC, FDB, or RMB. These are the only
assembler directives which are translated individually into one or more
bytes of machine code. The label, if used, represents the address of
the first byte of the machine code which results from the respective
source statement.

Any source statement which includes any assembler directive other
than EQU, FCB, FCC, FDB or RMB, must not be written with a label.

Comments Used with Assembler Directives

The assembler directive "NAM" does not distinguish between the
operand field and a comment. Both are treated by the assembler as
continuous text.

A comment may be used with any other assembler directive at the
option of the programmer; however, comments with the SPC or PAGE as-
sembler directives will not be printed (these two directives do not
print).

26

IV INSTRUCTION SET

The M6800 instructions are each described in detail in Appendix A.
This section will provide a brief introduction to the instructions and
discuss their use in writing 680b programs.

The instruction set is shown in summary form in Figure 4-1. Each
of the 72 executable instructions of the source language assembles into
from 1 to 3 bytes of machine code. The number of bytes depends on the
particular instruction and on the addressing mode. The addressing
modes which are available for use with the various executive instruc-
tions are indicated in Figure 3-2.

The coding of the first (or only) byte, corresponding to an exe-
cutable instruction, is sufficient to identify the instruction and the
addressing mode. The hexadecimal equivalents of the binary codes, which
result from the translation of the 72 instructions, in all valid modes
of addressing, are shown in Figure 4-2. There are 197 valid machine
codes, 59 of the 256 possible codes being unassigned. The octal and
decimal equivalents of the machine language codes are shown similarly,
in Figures 4-3 and 4-4.

Microprocessor instructions are often divided into three general
classifications: (1) memory reference, so called because they operate
on specific memory locations; (2) operating instructions that function
without needing a memory reference; (3) I/0 instructions for transfer-
ring data between the microprocessor and peripheral devices.

In many instances, the 6800 performs the same operation on both its
internal accumulators and the external memory Tocations. In addition,
the M6800 treats peripheral devices exactly 1ike memory locations, hence,
no I/0 instructions as such are required. Because of these features,
other classifications are more suitable for introducing the 6800 instruc-
tion set: (1) Accumulator and memory operations; (2) Program control
operations; (3) Condition Code Register operations.

CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR), also called the Program Status
Byte, will be described first since it is affected by many of the other
instructions as well as the specific operations shown in Figure 4-6.

The CCR is a 6-bit register within the MPU that is useful in controlling
program flow during system operation. The bits are defined in Figure
4-5,

The instructions shown in Figure 4-6 are available to the user for
direct manipulation of the CCR. In addition, the MPU automatically sets
or clears the appropriate status bits as many of the other instructions
are executed. The effect of those instructions on the condition code
register will be indicated as they are introduced and is also included
in the Instruction Set Summary of Figure 4-1.

21

MODES COND. CODE RES.
ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER BODLEAWARITHMETIC OPERATION ‘. 2
(Al rogister labats 17¢
OPERATIONS MNEMONIC[op | ~ [& [op !~ [#fop |~ |#|op|~|aior|~|# refer ta contents) wlelwfz]vic
Add AobA [{2)29 3|2 (aB|5 28843 AvM~A tlejsjt]t]s
apos jcej2|2fonf3 |2 es|s |2 Fefais3 B+M-B tleft|t}t]s
Add Acmirs ABA Bl2|t1]AsB=A LI RAKIRA R
Add with Carry aoca |ss |2 |29 |3 {2 |aefs|2fes a3 AtMIC+A tleltjt)t]s
Apc fco [2|2 fosf3)z fes s |2frofa|3s BrM+C~B tlejtft|tys
Aad anNOA fs4 [2|2 (98 j3 2 [ae]s|2]ea|a|3 AsMoA efelilt|nle
anos fca {2)2 |osf3 |2 |ea|s]|2|ra|a]s3 BeM-B ofe[titrje
Bit Test BTA |85 | 2|2 |95 [3[2|as|s5]|2|es|a |3 AsM ojoftit nfe
BiTB cs|2j2fos{3)2|es|s|2(Fs|a 3 BeM oleft]t]|r]e
Clear CLR 6F |7 | 2]{w 6|3 00 M ele|R[S|R]R
CLRA s 2] 1]|o0-a ofeln|sinin
CLRB sf| 2] 1]00-e elelR|S[R]R
Comoare oA |8 |2 |z o1 |32 |m|s]z2|B|a]3 A-m ofoft]|tfsfs
ews fcrf2]2jor |3 |2 |er|s|2fr|a]s B-M ele|t|tl2]s
Compare Acmitrs CBA nfjz2|1ia-8 olol ittt
Complement, 1's com 63 |7 {2|n 6|3 R elo|t]t|RS
COMA 32| 1)A+a o|sft]t[R|S
coms 32 1|&~8 ofleltlt|R]sS
Complement, 2's NEG 60 |7 |26 |3 0 -M-+M U KIRIR3[0](6)
(Negate) NEGA 02| 1]|00-A~A oleft]| 1D|®
NEGS s0)2|1]|00-8-8 olef]| tIO|®
Decimal Adiust, A DAA 19 | 2 | v | Converts Binary Add of 8CD Chuacters | o | o ¢ | £ 1@
Decrement DEC 6A |7 |[2]|7a|6 |3 M-i-M ool t|t|@fe
DECA A2 1 [A-1>4 olo/t|1[@|e
DECB SA[2[1]|B-1~B oleft]|ti@|e
Exclusive OR EORA (88 | 2 | 2|98 (3|2 |a8|5|2(BB a3 AoM=A elejt|t|n]e
€0RB |c8 |2 (2|08 |3 |2 |es |5 |2(F8]a |3 BoM~B elojt|t|n]e
Increment INC sc|7)2{7c|6]3 MeioM eiejt[t®]e
INCA al2]|1]|Ar1=a ejef 1| t|®e
INCB SC| 2] 1]|B+1-8 oleltit|®fe
Load Acmitr toaa (86 | 2 |29 |3 |2 |a6 |6 |2[B6]a |3 M-A ofelt|t|Rie
oA |c6 |2 |2|os|3 (2|6 |5 |2|F6|4|3 M-8 oleft|t|nr|e
Or, Inclusive ORAA |8A |22 |sa |3 |2 |aa[5]|z|8alal3 AdM~A olelt|tiR]je
oras fcAf2|2fpaf3 |2 feals |2|Fafla |3 BN -8 oleftitinfe
Push Data PSHA 36 [4 [1| A->Mgp, SP-1 48P oo s|oinie
PSHB 37 | 4 | 1] B~MgpSP-1-5P ofe|o|oleje
Puil Data PULA 324 1| SP+1-SP Mgp—~A e|lofofele|e
PULB 33 4| 1]|sPer—~sP mgp—8 o|o|efaje]e
Rotate Left ROL 69 |7 2|1 |63 [efe|t| 1@t
ROLA 12 (1}1A DI RARI[O]K]
ROLB s9lz|1]|8 eleltis|®
Retate Right ROR 66 |71 217|863 My . elolt|t@®]
RORA 46 [2 |t A] o - OOITITO— sleft|1|®)t
RORB 56|21 sl o olelt|t@®t
Shift Lett, Arithmetic AsL 68 [7]2]1 |56 |3 [- ejeft|t|@®]t
ASLA 8 |2(11A Q“EIUJIQ*U sieft|t®|
ASLB 8 |2{1]s ' el | tI®|t
Shift Right, Anthmetic ASR 67 |7 |2)17 |86 }|3 M - eleft|tI®|t
ASRA 41 |2 IA]QEDJEJ‘G ejelt|t®|t
> P
ASRB s1l2]1(8 elelt1t|®t
Shift Right, Logic. LSR 64 [7[2]7 |8 |3 M - elelrit@®f*
LSRA “ 2 A} 0~ [IIITn - g elelr|t|®|?
5 C)
LSR8 4 |2)1|8 ele|r|t|®|?
Store Acmit. STAA 97 4|2 ar|6|2]|87 |53 A-N oleltfs|nje
STAB o7 |4 faler|e|2f{F[5]3 8-M ele|titin|e
Subiract suea {80 | 2 (2|9 [3]2 (fa0|s5|[2|Bo|4]3 A-M-A ofeftit|ts
suss |co| 2|2 |oe |32 e0|s|[2fFo)a]s B-M-8 eleftit|t]s
Subract Acmitrs. SBA w|2{1]a-8~a DUIEIRIERE:
Subtr. with Carry sBCA |82 2 2|92)3 |2 {a2|sf2|82]a]3 A-M-C—A ole|t|t]t]s
sace jc2| 2 |2 (p2|3 |2 [e2|s{2|F2|4]3 8-M-C~8 ejeftftit]s
Transter Acmites TAB B |2{1]a-8 oleltitin]e
TBA 1712 (1]8=A o|ofsisRle
Test, Zero or Minus 5T 0|7 f{2[mis|3 ™00 ele|t[t|R|A
TSTA 0 2]1)A-00 ole|t|sin|n
TST8 5002]|1]|8-00 ojeit|t|nlr
Figure 4-1 M6800 Instruction-Set

2%

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTND INHER sfajafaf1]o
POINTER OPERATIONS MNEMoNiC [op | ~ | # | op |~ f =fop |~ [& or |~ | #|op |~ |« | BooLeaN/ARITHMETIC OPERATION [M {1 [N |2 v |cC
Compare Index Aeg PX ecf3|afsc{ef2lacis|2]sc]s|3 (X/Xy) - (MM + 1) sfe |t .
Decrement Index Reg DEX 0w |a|n X~1=X olole|t]|e]e
Decrement Stack Pnte 0ES 14| SP-1-+8P oleje|s]e]e
Increment (ndex Reg INX 08 | s | X+1-X ejejeltietfe
Increment Stack Pntr INS I R I) SP+1-+SP ojolejeje|e
Load Index Reg Lox cE[3|afoe|ef2feefsf2|re]s |3 M Xy, M+ 1 -X) ele(®|t|r]e
Load Stack Pnte L0 s€| 3 |3 o |a |2 [aEl6 |2|ee s |3 M=>SPy, (M« 1) ~SP ole|®|t]|r]e
Store Index Reg STX of |5 |2 |erf7 |2 (FF |6 {3 Xy =M X > M+ 1) ofel@t|n]e
Store Stack Patr sTS 9F | s |2]aF)j7 |2]8F 6|3 SPy—+M, SPL =M+ 1] ele|@|t]n|e
Indx Reg ~ Stack Pntr xS 3 |4 |1 X-1-8P DEICICIERE]
Stack Pntr — Indx Reg TSX 30 [4 | SPe) X esje|o|o|eie
JUMP AND BRANCH RELATIVE INDEX EXTND INHER siafajzir{o
OPERATIONS MNEMONIC | 0P =flop|[~]=fop|~|=for|~}= BRANCH TEST wlofn]zfvic
Branch Always BRA 2|4 2 None o|lejo|e|aje
Branch If Carry Clear 8CC ufal2 c=0 oflofo]|efo]e
Branch 1t Carry Set 8CS R KR c=1 o|efe]ejeie
Branch If = Zero BeQ f27 | s 2 z=1 oflofoajelale
Branch It > Zero s lc | 4| 2 Nav=Q elelo|e]|ele
Branch it > Zero seT J2E |42 Z4NaVI =0 ejolo|oie]|e
Branch If Higher BHI 2|82 c+2 =0 elelo|elo]e
Branch |1 < Zero BLE | af2 Z4NoVI=) elofololeie
Branch if Lower Or Same BLS n|af2 c+2=1 o|ofefe|efe
Branch It < Zero LT W] Nove1 elejefeio]e
Branch If Minus Ml 8|4 2 N=1 ejeloje|o|e
Branch It Not Equal Zero BNE |26) 4| 2 2:0 ojole|e|o]e
Branch If Overfiow Clear Bve f28 | 4] 2 V=0 olele]|afefe
Branch 1 Overflow Set BVS w}ala2 V=1 elofe]|oje|e
Branch If Plus 8PL wmlaf2 N=0 olele|efa|e
Beanch To Subroutine BSR 80| 8|2 ofofe|e|e]e
Jump mp 6E| 41 217€ 3|3 See Special Operations efojejofoie
Jump To Subroutine SR AD} 8} 2180} 9 |3 eloejeloje e
No Operation NOP o2 |1 Advances Prog. Catr. Only elojejofe]e
Return From Interrupt RTI 3101
Retuen From Subroutine RTS s |1 .
Software interrupt swi 3F |12] 1 | | Seeswuci! Operatioms elsjefefe|e
Wait for Interrupt WAL 3Ef S |1 o[@|o|e|e]»
CONDITIONS CODE REGISTER INHER woocean Lo lol3l2l! 0 | coNDITION CODE REGISTER NOTES:
OPERATIONS MNEMONIC | OF | ~ | = | OPERATION | H |1 N Z |V |C (Bit set if test is true and cleared otherwise)
Clear Carry cLe oc |2 | 1 0-C elelo|e|e|n| @ BtV Test Resun= 100000007
Clear Interrupt Mask cu E |21 01 of{n|o|e|e[e] @ mich Test: Resun= 000000007
Clear Overflow o a2 | 0~V ole|e]e|RrR|e] @ Bire) Test Decimal value of most significant BCD Character greater than nine?
Set Carry SEC o |2] 1-¢ e|loejeje]|eis (Not cleared if previously set.)
Set Interrupt Mask SE) of |2] 1 11 ols|o]e|e o] @ BtV Test: Operand = 10000000 prior to execution?
Set Overllow SEV o | 211 1V elejefels e ® Bitv) Tet Operand = 01117111 prior to execution?
Acmite A CCA TAP 6 2] A-CCR | — (® (BitV) Test: Set equal 1o result of N % C after shilt has occursed.
CCR = Acmitr A ™ o |2 1 cwa-a |o oo [* e @ (BitN) Test: Sign bit of most significant (S} byte of result = 17
@ (BitV) Test: 2's complement overfiow from subtraction of LS bytes?
® (BitN) Test: Result foss than zero? (Bit 152 1)

LEGEND: 00 Byte = Zero; @ (AN Load Condition Code Register from Stack. (See Special Operations)

0P Operation Code (Hexadecimal); H Half-carry from bit 3; @ eien Sulw@lninmmp(ocumllprmou:lvm,aNunvllaxhhlnmmunm

~ Number of MPU Cycles; I Interrupt mask requirad {0 axit the wat sate.

& Number of Program Bytes; N Negatwe (sign bit) @ (ALL) Setaccording to the contents of Accumufator A.

+ Arithmetic Plus; 2 Zero tbyte)

- Avithmetic Minus; V. Overfiow, 2's complement

« Boolesn AND; € Carryfrombit 7

Mgp Contents of memory location R Reset Always

pointed to be Stack Pointer; s Set Always

+ Boolean Inclusive OR; H Test and set if true, cleared otherwise

@ Boolesn Exclusive OR; . Not Atfected

¥ Complement of M; CCR Condition Code Register

-~ Transter into; LS Least Significant

0 Bit = Zero; MS Most Significant o

29

L 40 NEG A 80 SUB A iMM| CO SUB B IMM
01 NOP 41 . 81 CMP A MM | CI CMP B IMM
(172 2 82 SBC A IMM | C2 SBC B IMM
03 e 43 COM A 83 c oo

04 4 LSR A 84 AND A IMM [C4 AND B IMM
05 - a5 * 85 BIT A IMM | C5 BIT B IMM
06 TAP 46 ROR A 86 LDA A IMM | C6 LDA B IMM
07 TPA 47 ASR A 88 * [or B

08 INX 48 ASL A 8 EOR A IMM|[C8 EOR B IMM
09 DEX 49 ROL A 89 ADC A IMM|C9 ADC B IMM
0A CLV 4A DEC A 8A ORA A IMM|CA ORA B IMM
0B SEV B+ 88 ADD A IMM|CB ADD B IMM
oC CLC 4C INC A 8C CPX IMM | CC *

oD SEC 4D TST A 8D BSR REL | CD *

OE CL 4E * 8E LDS IMM | CE LDX MM
OF SEI 4F CLR A 8F * CF *

10 SBA 50 NEG B 9% SUB A DIR {|DO SUB B DIR
11 CBA 52 * 91 CMP A DIR | D1 CMP B DIR
12 > 52 . 92 SBC A DIR { D2 SBC B DIR
13+ 53 COM B 93 o+ D3 *

4 54 LSR' B 94 AND A DIR |D4 AND B DIR
15 - 55 . 95 BIT A DIR | D5 BIT B DIR
16 TAB 56 ROR B 9 LDA A DIR | D6 LDA B DIR
17 TBA 57 ASR B 97 STA A DIR | D7 STA B DIR
18+ 58 ASL B 98 EOR A DR |D8 EOR B DIR
19 DAA 59 ROL B 9 ADC A DR |D9 ADC B DIR
1A * SA DEC B 9A ORA A DIR | DA ORA B DIR
1B ABA 5B * 9B ADD A DIR | DB ADD B DIR
1IcC . 5C INC B 9C CPX DR |DC *

D+ SD TST B 9D * DD *

1IE* SE * 9E LDS DIR | DE LDX DIR
IF» SF CLR B 9F STS DIR | DF STX DIR
20 BRA REL 60 NEG IND A0 SUB A IND |EO SUB B IND
21+ 6 * Al CMP A IND |El CMP B IND
22 BHI REL 62 * A2 SBC A IND E2 SBC B IND
23 BLS REL 63 COM IND A3+ E3 »

24 BCC REL 64 LSR IND A4 AND A IND |E4 AND B IND
25 BCS REL 65 * AS BIT A IND |ES BIT B IND
26 BNE REL 66 ROR IND A6 LDA A IND | E6 LDA B IND
27 BEQ REL 67 ASR IND AT STA A IND | E7 STA B IND
28 BVC REL 68 ASL IND A8 EOR A IND | 8 EOR B IND
29 BVS REL 69 ROL IND A9 ADC A IND | E9 ADC B IND
2A BPL REL 6A DEC IND AA ORA A IND | EA ORA B IND
2B BMI REL 6B * AB ADD A IND | EB ADD B IND
2C BGE REL 6C INC IND AC CPX IND | EC *

2D BLT REL 6D TST IND AD ISR IND | ED *

2E BGT REL 6E IMP IND AE LDS IND | EE LDX IND
2F BLE REL 6F CLR IND AF STS IND | EF STX IND
30 TSX 70 NEG EXT BO SUB A EXT | O SUB B EXT
31 INS e Bl CMP A EXT|{Fl CMP B EXT
32 PUL A 2 0+ B2 SBC A EXT |F2 SBC B EXT
33 PUL B 73 COM EXT B3 + B3

34 DES 74 LSR EXT B4 AND A EXT |F4 AND B EXT
35 TXS 75+ BS BIT A EXT |F5 BIT B EXT
36 PSH A 76 ROR EXT B6 LDA A EXT | F6 LDA B EXT
37 PSH B 77 ASR EXT B7 STA A EXT |F7 "STA B EXT
38+ 78 ASL EXT B8 EOR A EXT |F8 ADC B EXT
39 RTS 79 ROL EXT B9 ADC A EXT |F9 ADC B EXT
3A ¢+ 7A DEC EXT BA ORA A EXT|FA ORA B EXT
3B RT B BB ADD A EXT |FB ADD B EXT
i« 7C INC EXT BC CPX EXT | FC *

iD 7D TST EXT BD ISR EXT | FD *

3E WAl 7E IMP EXT BE LDS EXT | FE 'LDX EXT
3F SWI 7F__ CLR _EXT BF__ STS EXT | FF STX EXT
Notes: 1. Addressing Modes: A = Accumulator A IMM = Immediate REL = Relative

B = Accumulator B DIR = Direct IND = Indexed
2. Unassigned code indicated by***”", EXT = Extended -

Figure 4-2 Hexadecimal Values of Machine Codes

30

000 100 NEG A 200 SUB A IMM]300 SUB B MM
001 NOP 101 * 201 CMP A IMM| 301 cCMP B IMM
002 = 102 = 202 SBC A IMM {302 SBC B IMM
003 * 103 COM A 203 » 303 *
004+ 104 LSR A 204 AND A IMM | 304 AND B IMM
005 * 10s = 205 BIT A IMM 1305 BIT B MM
006 TAP 106 ROR A 206 LDA A IMM (306 LDA B MM
007 TPA 107 ASR A 207+ 307 =
010 INX 110 ASL A 210 EOR A IMM| 310 EOR B IMM
011 DEX 111 ROL A 211 ADC A IMM | 311 ADC B iMM
0i2 CLV 112 DEC A 212 ORA A IMM 312 ORA B IMM
013 SEV 13 = 213 ADD A IMM | 313 ADD B IMM
014 CLC 114 INC A 214 CPX IMM | 314 =
015 SEC 115 TST A 215 BSR REL | 315 =
016 CLI 116 = 216 LDS IMM | 316 LDX MM
0i7 SEI 117 CLR A 217 =+ 317+
020 SBA 120 NEG B 220 SUB A DIR {320 SUB B DIR
021 CBA 121 » 221 CMP A DIR |321 CMP B DIR
022 =* 122+ 222 SBC A DIR |322 SBC B DIR
023+ 123 COM B 223 » 323 o+
024 * 124 LSR B 224 AND A DIR {324 AND B DIR
025 =* 125 * 225 BIT A DIR [325 BIT B DIR
026 TAB 126 ROR B 226 LDA A DIR |326 LDA B DIR
027 TBA 127 ASR B 227 STA A DIR [327 STA B DIR
030 * 130 ASL B 230 EOR A DIR 1330 EOR B DIR
031 DAA 131 ROL B 231 ADC A DIR | 331 ADC B DIR
032 * 132 DEC B 232 ORA A DIR | 332 ORA B DIR
033 ABA 133 = 233 ADD A DIR | 333 ADD B DIR
034 = 134 INC B 234 CPX DIR |334 =*
035 = 135 TST B 235 » 335 =
036 * 136, = 236 LDS DIR | 336 LDX DIR
037 = 137 CLR B 237 STS DIR |337 STX DIR
040 BRA REL 140 NEG IND 240 SUB A IND 340 SUB B IND
041 * 141 =* 241 CMP A IND | 341 CMP B IND
042 BHI REL 142 = 242 SBC A IND 342 SBC B IND
043 BLS REL 143 COM IND 243 * 343 *
044 BCC REL 144 LSR IND 244 AND. A IND (344 AND B IND
045 BCS REL 145 * 245 BIT A IND {345 BIT B IND
046 BNE REL 146 ROR IND 246 LDA A IND | 346 LDA B IND
047 BEQ REL 147 ASR IND 247 STA A IND | 347 STA B IND
050 BVC REL 150 ASL IND 250 EOR A IND | 350 EOR B IND
051 BVS REL 151 ROL IND 251 ADC A IND }351 ADC B IND
052 BPL REL 152 DEC IND 252 ORA A IND | 352 ORA B IND
053 BMI REL 153 = 253 ADD A IND | 353 ADD B IND
054 BGE REL 154 INC IND 25¢ CPX IND | 354 =
055 BLT REL 155 TST IND 255 ISR IND 355 =
056 BGT REL 156 JMP IND 256 LDS IND {356 LEX IND
057 BLE REL 157 CLR IND 257 STS IND | 357 STX IND
060 TSX 160 NEG EXT 260 SUB A EXT [360 SUB B EXT
061 INS 161 = 261 CMP A EXT (361 CMP B EXT
062 PUL A 162 * 262 SBC A EXT] 362 SBC B EXT
063 PUL B 163 COM EXT 263 * 363 =
064 DES 164 LSR EXT 264 AND A EXT [364 AND B EXT
065 TXS 165 * 265 BIT A EXT | 365 BIT B EXT
066 PSH A 166 ROR EXT 266 LDA A EXT |366 LDA B EXT
067 PSH B 167 ASR EXT 267 STA A EXT } 367 STA B EXT
070 = 170 ASL EXT 270 EOR A EXT {370 EOR B EXT
071 RTS 171 ROL EXT 271 ADC A EXT [371 ADC B EXT
072 * 172 DEC EXT 272 ORA A EXT [372 ORA B EXT
073 RTI 173 * 273 ADD A EXT [373 ADD B EXT
074 = 174 INC EXT 274 CPX EXT {374 =
075 * 175 TST EXT 275 ISR EXT [375 =
076 WAI 176 JMP EXT 276 LDS EXT 376 LDX EXT
077 Swi 177__CLR EXT 277 __STS EXT [377 STX EXT
Notes: 1. Addressing Modes: A = Accumulator A IMM = Immediate REL = Relative
B = Accumulator B DIR = Direct IND = Indexed
2. Unassigned code indicated by***"". EXT = Extended
Figure 4-3 Octal Values of Machine Codes

3

ox)* 064 NEG A 128 SUR A IMM [192 SUB B iIMM
001 NOP 0es * 129 CMP A IMM | 193 CMP B IMM
002 » 066 * 130 SBC A IMM | 194 SBC B IMM
003 * 067 COM A 131 * 195 +

004 * 068 LSR A 132 AND A IMM | 196 AND B IMM
00s * 069 - 133 BIT A IMM | 197 BIT B IMM
006 TAP 070 ROR A 134 LDA A IMM | 198 LDA B MM
007 TPA 071 ASR A 135 = 199 =

008 INX 072 ASL A 136 EOR A IMM | 200 EOR B MM
009 DEX 073 ROL A 137 ADC A IMM [301 ADC B MM
010 CLV 074 DEC A 133 ORA A IMM | 202 ORA B MM
o1t SEV 075 * 139 ADD A IMM | 203 ADD B MM
012 CLC 076 INC A 140 CPX IMM | 204 *

013 SEC 077 TST A 141 BSR REL | 205 *

014 CLI 078 * 142 LDS IMM | 206 LDX IMM
015 SEI 079 CLR A 143 = 207 ¢

016 SBA 080 NEG B 144 SUB A DIR | 208 SUB B DIR
017 CBA 081 * 145 CMP A DIR |209 CMP B DIR
018 * 082 = 146 SBC A DIR | 210 SBC B DIR
019 * 083 COM B 147 = 211+

020 * 084 LSR B 148 AND A DIR | 212 AND B DIR
021 * 085 = 149 BIT A DIR [213 BIT B DIR
022 TAB 086 ROR B 150 LDA A DIR |214 LDA B DIR
023 TBA 087 ASR B 151 STA A DIR |215 STA B DIR
024 = 088 ASL B 152 EOR A DIR |216 EOR B DIR
025 DAA 089 ROL B 153 ADC A DIR |27 ADC B DIR
026 * 0% DEC B 154 ORA A DIR | 218 ORA B DIR
027 ABA 091 = 155 ADD A DIR |219 ADD B DIR
028 * 092 INC B 156 CPX DIR (220 =

029 = 093 TST B 157 = 221 ¢

030 = 094 = 158 LDS DIR |222 LDX DIR
031 * 095 CLR B 159 STS DIR | 223 STX DIR
032 BRA REL 096 NEG IND 160 SUB A IND | 224 SUB B IND
033 = 097 * 161 CMP A IND | 225 CMP B IND
034 BHI REL 098 * 162 SBC A IND | 226 SBC B IND
035 BLS REL 099 COM IND 163 * 227 o+

036 BCC REL 100 LSR IND 164 AND A IND | 228 AND B IND
037 BCS REL 101 > 165 BIT A IND {229 BIT B IND
038 BNE REL 102 ROR IND 166 LDA A IND |230 LDA B IND
039 REQ REL 103 ASR IND 167 STA A IND | 231 STA B IND
040 BVC REL 104 ASL IND 168 EOR A IND | 232 EOR B IND
04] BVS REL 105 ROL IND 169 ADC A IND |233 ADC B IND
042 BPL REL 106 DEC IND 1700 ORA A IND |234 ORA B IND
043 BMI REL 107 * 171 ADD A IND |[235 ADD B IND
044 BGE REL 108 INC IND 172 CPX IND |236 <

045 BLT REL 109 TST IND 173 JSR IND | 237 *

046 BGT REL 110 JMP IND 174 LDS IND |238 LDX IND
047 BLE REL 111 CLR IND 175 STS IND | 239 STX IND
048 TSX 112 NEG EXT 176 SUB A EXT | 240 SUB B EXT
049 INS 13 * 177 CMP A EXT [241 CMP B EXT
050 PUL A 114 * 178 SBC A EXT | 242 SBC B EXT
051 PUL B 115 COM EXT 179 = 243 *

052 DES 115 LSR EXT 180 AND A EXT | 244 AND B EXT
053 TXS 117 * 181 BIT A EXT | 245 BIT B EXT
054 PSH A 118 ROR EXT 182 LDA A EXT (246 LDA B EXT
055 PSH B 119 ASR EXT 183 STA A EXT | 247 STA B EXT
056 * 120 ASL EXT 184 EOR A EXT {248 EOR B EXT
057 RTS 121 ROL EXT 185 ADC A EXT [249 ADC B EXT
058 * 122 DEC EXT 186 ORA A EXT |250 ORA B EXT
059 RTI 123 * 187 ADD A EXT | 251 ADD B EXT
060 * 124 INC EXT 188 CPX EXT {252 =

061 * 125 TST EXT 189 JSR EXT | 253 =

062 WAI 126 JMP EXT 190 LDS EXT 254 LDX EXT
063 SWI 127 CLR EXT 191 STS EXT | 255 STX EXT
Notes: 1. Addressing Modes: A = Accumulator A IMM = Immediate REL = Relative

B = Accumulator B DIR = Direct IND = Indexed
2. Unassigned code indicated by*‘*"". EXT = Extended

Figure 4-4 Decimal Values of Machine Codes

32

bs|by b3 b

ny

b1]%o

H (I N |{Z|V]|C

H = Half-carry; set whenever a carry from b to b, of the result is
generated by ADD, ABA, ADC; cleared if no b %o b carry; not
affected by other 1nstruct1ons.

I = Interrupt Mask; set by hardware or software interrupt of SEI instruc-
tion; cleared by CLI instruction. (Normally not used in arithmetic
operations.) Restored to a zero as a result of an RT1 instruction if
1 stored on the stack is low.

N = Negat1ve, set if high order bit (b7) of result is set; cleared other-
wise.

Z = Zero; set if result = 0; cleared otherwise.

V = oVerflow; set if there was arithmetic overflow as a result of the

operation; cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b)
of the result; cleared otherwise.

Figure 4-5 Condition Code Register

CONDITIONS CODE REGISTER S |41312|1]o0
BOOLEAN

OPERATIONS MNEMONIC OPERATION JH | I [N] Z]V |cC

Clear Carry CLC 0->C o oo |eo]|e |R

Clear Interrupt Mask CLI 0> e (R |{o|oejeie

Clear Overflow CLv 0V e jelejelR |e

Set Carry SEC 1->C o |oje|e]|e (S

Set Interrupt Mask SE! 1= o |Sle|e]|e]e

Set Overflow SEV 1=V o (e |oeje]|S |e

Acmitr A > CCR TAP A-CCR ®

CCR —>Acmitr A TPA CCR—A L] l. l [} l . | . l .

R = Reset

S =Set

o = Not affected
(@ (ALL) Set according to the contents of Accumulator A.

Figure 4-6 Condition Code Register Instructions
33

NUMBER SYSTEMS

Effective use of many of the instructions depends on the interpre-
tation given to numerical data, that is, what number system is being
used? For example, the ALU always performs standard binary addition
of two eight bit numbers using the 2's complement number system to re-
present both positive and negative numbers. However, the MPU instruc-
tion set and hardware flags permit arithmetic operation using any of
four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number
in the range -128 to +127:
26 2% 2% 23 22 o1 ;0

by bg bg by b3 by by by

1 0000O0TO0TO O (-128 in 2's complement)
T 1111111 (-1 in 2's complement)

0 0O 00 0 (0 in 2's complement)

0 0
000O0O0O0 01 (+1 in 2's complement)
01 111111 (+127 1in 2's complement)

(2) Each byte can be interpreted as a signed binary number in the
range -127 to +127:

4 .3 .2

26 2% % 23 22 01 0

b7 b6 b5 b4 b3 b2 b1 b0
11111111 (-127 in signed binary)

1 00 000 D01 (-1 in signed binary)
0 00O0O0OTOTPO (0 in signed binary)
0 000 O0O0OD0I1 (+1 in signed binary)

o111 11 11 (+127 in signed binary)

(3) Each byte can be interpreted as an unsigned binary number in
the range 0 to 255:

27 26 25 24 23 22 21 20

by bg bs bg b3 bz by bg

0 00O0O0OOO (0 in unsigned binary)
11111111 (255 in unsigned binary)

K1}

(4) Each byte can be thought of as containing two 4-bit binary
coded decimal (BCD) numbers. With this interpretation, each byte can
represent numbers in the range 0 to 99:

23 22 21 20 23 22 51 50

b7 b6 b5 b4 b3 b2 b] b0

0 00 O0O0O0TO0OO (BCD 0)
001007111 (BCD 27)
10011001 (BCD 99)

The two's complement representation for positive numbers is ob-
tained simply by adding a zero (sign bit) as the next higher signifi-
cant bit position:

27 26 25 24 23 22 21 0

a7 a6 a5 64 33 a2 a] ao

T 1T 1 1111 (binary 127)

01T 1T 11111 (+127 in 2's compTement representation)
0 000 O0 01 (binary 1)

000 0O0TO0OTOO 1 (#1 in 2's complement representation)

When the negative of a number is required for an arithmetic opera-
tion, it is formed by first complementing each bit position of the pos-
itive representation and then adding one.

6432168 4 2 1

a7 66 as a4 a3 az 31 aO

01T 111111 (+127 in 2's complement representation)
1000 0O0O0TO (1's complement)

1 (add one)
1 00 0 0 0 0 1 (-127 in 2's complement representation)
000 0O0COTOO (0 in 2's complement representation)
T1T 111111 (1's complement)

1 (add one)
0 00 00O OO0 O ("0" is same in either notation)
0000 O0O0O 01 (+1 in 2's complement representation)
1T1T1 11110 (1's complement)

1 (add one)
T T T 1T 1T 1 711 (-1 in 2's complement representation)

35

Note that while +127 is the largest positive two's complement num-
ber that can be formed with 8 digits, the largest negative two's com-
plement number is 10000000 or -128. Hence, with this number system, an
eight bit byte can represent integers on the real number line between
-128 and +127 and ay can be regarded as a sign bit; if a; is zero the
number is positive, if ay is one the number is negative:

10000000 . 11111111 00000000 00000001 " o1111111
1 1 1 ; !
~128 K4 -1 0 +1 ~ +127
Since much of the literature on arithmetic operations presents the
information in terms of signed binary numbers, the difference between
2's complement and signed binary notation is of interest. Signed bi-
nary number notation also uses the most significant digit as a sign
bit (0 for positive, 1 for negative). The remaining bits represent the
magnitude as a binary number.
+ 643216 8 4 2 1
a; ag ag 3y a3 35 31 Q)
1T 11111 11 (-127 in signed binary)
10000001 (-1 in signed binary)
000O0O0OOOQO (0 in signed binary)
000O0OTO0U O (+1 in signed binary)
o1 111111 (+127 in signed binary)
An 8-bit byte in this notation represents integers on the real
number line between -127 and +127:
11111111 . 10000001 00000000 00000001 01111111
-127 7 -1 0 +1 e +127

36

-

Comparing this to the 2's complement representation, the positive num-
bers are identical and the negative numbers are reversed, i. e., -127
in 2's complement is -1 in signed binary and vice versa. In normal
programming of the MPU, the difference causes no particular problem
since numerical data is automatically converted to the correct format
during assembly of the program source statements. However, if during
system operation, incoming data is in signed binary format, the program
should provide for conversion. This is easily done by first comple-
menting each bit of the signed binary number except the sign bit and
then adding one:

+ 6432168 4 2 1

a7 a6 65 64 a3 az a] ao

11 .] 111 11 (-127 in signed binary)

1 00 0O0O0O0TO (1's complement except for sign bit)
0 00O0OOTO 01 (add 1)

100000 01 (-127 in 2's complement)

The MPU instruction set provides for a simple conversion routine.
For example, the following program steps can be used:

This routine assumes that the signed binary data is stored in accumulator
A (ACCA). The program tests the sign bit and, if the number is negative
(N=1), performs the required conversion. The contents of ACCA and the N
bit of the Condition Code Register would be as follows after each step of
a typical conversion:

Instr N a a aaaaa a
TSTA 111110001 (-113 is signed binary)
BPL NEXT 11711100 01
NEGA 00 00O0T1 111 (2's complement of ACCA)
ORAA #%10000000 1000071111 (-113 in 2's complement)

37

th

Note that the sign bit status, N, is updated as the NEG and ORA instruc-
tions are executed. This is typical for many of the instructions; the
Condition Code Register is automatically updated as the instruction is
executed.

ACCUMULATOR AND MEMORY OPERATIONS

For familiarization purposes, the Accumulator and Memory operations
can be further subdivided into four categories: (1) Arithmetic Opera-
tions; (2) Logic Operations; (3) Data Testing; and {4) Data Handling.

Arithmetic Operations

The Arithmetic Instructions and their effect on the GCR are shown
in Figure 4-7. The use of these instructions in performing arithmetic
operations is discussed in section V of this manual.

COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (AW register labels 5fja)3[2|1]0
OPERATIONS MNEMONIC refer to contents) Hit|N|2Z|V]|C
Add ADDA A+M—>A tiettis]

ADDB B+M~B tleft|t|t]t
Add Acmlitrs ABA A+B—A Tjeltisfst
Add with Carry ADCA A+M+C—>A A EIRIEIER
ADCB B+M+C—8 Tlejptftit]s
Complement, 2's NEG 00 -M->M elel | @ ©)
(Negate) NEGA | 00 —A—A elelt|:|0@®
NEGB | 00 —B-B elel t|t|0|@®
Decimal Adjust, A DAA | Gonverts Binary Add. of BCD Characters | o o 4| 44 |
Subtract SUBA A-M=-A ojeltitltt]
SUBB B-M-8 ofloltlt]t |t
Subract Acmitrs. SBA A-B—A ejeltltltls
Subtr. with Carry SBCA A-M-C—>A elel t!t|t|1
SBCB B-M-C—B elolt|t|t]2

*Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCD numbers. DAA adds 0110 to Jower half-byte if least significant number >1001 or if preceding instruction
caused a Half-carry. Adds 0110 to upper half-byte if most significant number >1001 or if preceding instruction
caused a Carry. Also adds 0110 to upper half-byte if least significant number >1001 and most significant num-
ber=8.

(Bit set if test is true and cleared otherwise)
@ (BitV) Test: Result = 100000007
@ (BitC) Test: Resuit = 000000007

(® (BitC) Test: Decimal value of most significant BCD Character greater than nine?
(Not cleared if previously set.)

Figure 4-7 Arithmetic Instructions

38

Logic Operations

The Logic Instructions and their effect on the CCR are shown in
Figure 4-8. Note that the Complement (COM) instruction applies to
memory locations as well as both accumulators.

COND. CODE REG

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (ANl register labels 514]13/2]1][0
OPERATIONS MNEMONIC refer to contents) HilLjN]Z{V]C
And ANDA AeM-—A efeltit|R]e

ANDB BeM~—B eleo| L[L|R|e®
Complement, 1's com M-m o|le| f|tIR|S
COMA | A-A ele|t|t|R]|ls
comB | B-8 eleltlt|R|ls
Exclusive OR EORA A®M—>A e|le|t|t|R|®
EORB BoM->B eoje|t|t|R|l®
Or, Inclusive ORA A+M-—>A ele| 1| tlr]|e
ORB B+M-8 ejelt|tIR]le

Figure 4-8 Logic Instructions

Data Test Operations

The Data Test instructions are shown in Figure 4-9. Bit Test (BIT)
is useful for updating the CCR as if the AND function were executed but
does not change the contents of the accumulator. The Test (TST) instruc-
tion also operates directly on memory and updates the CCR as if a compari-
son (CMP) to zero had been executed.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (Al register labels 413121110
OPERATIONS MNEMONIC refer to contents) H{I[N]Z]V|[C
Bit Test BITA AeM eleftit(R]le
BITB BeM ele|t[tIR]®

Compare CMPA A-M efel titit]t
CmPB B-M elo|l t[t]t]¢

Compare Acmitrs CBA A-B olert(t]t]t
Test, Zero or Minus TST M- 00 e|lelfIt|RIR
TSTA A-00 ejeft|tIR|R

TST8B B-00 elel | tIRIR

Figure 4-9 Data Test Instructions

39

Data Handling Operations

The Data Handling instructions are summarized in Figure 4-10. Note
that the Clear (CLR), Decrement (DEC), Increment (INC), and Shift/Rotate
instructions all operate directly on memory and update the CCR accord-
ingly.

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY (Al register labels 51473|2]1}0
OPERATIONS MNEMONIC refer to contents) HilI{N]Z]V]|C
Clear CLR 00 »M ele®| R|S|R{R
CLRA 00 ~>A o|e|RISIRIR
CLRB 00 -8 e|e|R|IS|R|R
Decrement DEC M-1->M eleit|t|®]e
DECA A-1-A ele| 1|t D]
DECB B-1-8 oot |t|®e
Increment INC M+1->M ole|t|ti®]e
INGA | A+1-A olelt|t|®]e
INCB B+1-B ele|t[3]|®]e
Load Acmitr LDAA M->A eleftltiRle
LDAB M-8 ele|tit|R]e®
Push Data PSHA A->Mgp, SP-1->5P elejoje|o]e
PSHB B - Mgp, SP—1->SP eo|lejojojole
Puli Data PULA SP+1->SP,Mgp—>A (AR I AN AN BN]
PULB SP+1-SP, Mgp—B ojo|o|ojole
Rotate Left ROL M ool t||®]¢
ROLA A’—D«-E]:ED:EED«J elel t|tI®|?

c b; « b

ROLB | B olelt]|t|@®|t
Rotate Right ROR M EIERE 9 %
RORA AL»%I-»EIEEPIE}O—I olelt|tl®]*
RORB B AR ER O]
Shift Left, Arithmetic ASL M - ARIAERERIO]E:
ASLA A Dsg:D:DIlbjo«n ele|t]|t|®]¢
ASLB B ejo| 1|t |®]?
Shift Right, Arithmetic ASR M o A EAE] (@ 3
ASRA A} I:é:DID:E i E} efe| 1| 3|®]2
ASRB B ole(t|3|®ft
Shift Right, Logic. LSR M . elelR|3|®]?
LSRA A] 0-»>OI111TD ~ O e|eiR|T|®|?
sk | B ” "o ololr|t|®|*
Store Acmltr. STAA A->M e{eo|t|2|R]|e
STAB B->M e|o|tlt|R]e
Transfer Acmltrs TAB A-B e|o|t|3|RIe®
TBA B—>A ejo|t|t|R|e

@ (BitV) Test: Operand = 10000000 prior to execution?
® (BitV) Test: Operand = 01111111 prior to execution?
® (BitV) Test: Set equal to result of N @ C after shift has occurred.

Figure 4-10 Data Handling Instructions
40

[N

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two categories:
(1) Index Register/Stack Pointer instructions; (2) Jump and Branch oper-
ations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU's Index Register
and Stack Pointer are summarized in Figure 4-11. Decrement (DEX, DES),
increment (INX, INS), load (LDX, LDS) and store (STX, STS) instructions
are provided for both. The Compare instruction, CPX, can be used to
compare the Index Register to a 16-bit value and update the Condition
Code Register accordingly.

INDEX REGISTER AND STACK sYafalz2]1/lo
POINTER OPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION | H |1 |n |2 |v|ic
Compare Index Reg CPX (XH/XL) — (MM + 1) ofe|®]t|@)]e
Decrement Index Reg DEX X-1-X ojlofe|t|e|le
Decrement Stack Pntr DES SP—-1->8P ojo|e|ejo||e
Increment Index Reg INX X+1-=>X eleje|t]ie|le
Increment Stack Pntr INS SP+1->SP ejoeje]ejele
Load Index Reg LDX M=>Xy, (M+1) > X ele|®@|t{r]|e
Load Stack Patr LDS M=SPy, (M+1) >SP| o|e|[®|t]|R|[e
Store Index Reg STX Xp=>M X~ (M+1) eie(®|t|R]]e
Store Stack Pntr STS SPH M, SP > (M+1) o|el@]t|r||e
Indx Reg —>Stack Pntr XS X-1->8P ejlo|o]e]eole
Stack Pntr — Indx Reg TSX SP+1->X eo|lojoe|eoe|le
@ {Bit N) Test: Sign bit of most significant {MS) byte of result = 1?
@ (BitV) Test: 2's complement overflow from subtraction of LS bytes?
® (Bit N} Test: Result less than zero? (Bit 15 = 1)

Figure 4-11 Index Register and Stack Pointer Instructions

The TSX instruction causes the Index Register to be Toaded with the
address of the last data byte put onto the "stack". The TXS instruction
loads the Stack Pointer with a value equal to one less than the current
contents of the Index Register. This causes the next byte to be pulled
from the "stack" to come from the Tocation indicated by the Index Regis-
ter. The utility of these two instructions can be clarified by describ-
ing the "stack" concept relative to the M6800 system.

f

The "stack" can be thought of as a sequential list of data stored
in the 680b's read/write memory. The Stack Pointer contains a 16-bit
memory address that is used to access the 1ist from one end on a last-
in-first-out (LIFO) basis in contrast to the random access mode used by
the MPU's other addressing modes.

The M6800 instruction set and interrupt structure allow extensive
use of the stack concept for efficient handling of data movement, sub-
routines and interrupts. The instructions can be used to establish one
or more "stacks" anywhere in read/write memory. Stack Tength is Timited
only by the amount of memory that is made available.

MPU MPU

—

acea [F3] acca [F3]

(—

m-—-2 m~2
m—1 SP ———t- m — 1
"
SP et~ m a New Data m F3
-4
m+1 7F a m+1 7F
Previously Previously
Stacked m+2 63 Stacked m+2 63
Data Data -
m+3 FD m+3 FD

—_‘EC/J 3C
r——/ —_/

PC —— PSHA) 8 PSHA
Next Instr. PC b~ Next Instr.
’__‘ ’_4
{a) Before PSHA (b) After PSHA

Figure 4-12 Stack Operation, Push Instruction

42

MPU MPU

o acca acca
m-2 m-2
m-1 m-1
SP =t m m
m+1 1A SP—»m+1 1A
Previously
Stacked m+2 3c m+2 3c
Data Praviously
m+3 o5 Stacked m+3 DS
Data
PC = PULA PULA
Next instr. PC w1 Next Instr.
(a) Before PULA (b) After PULA
Figure 4-13 Stack Operation, Pull Instruction
m-2 SP=—#m — 2
m—1 m-—1 (n+2)H
SP—— m m (n+2)L
m+1 7JE m+ 1 7€
7A
]
PC v B8SR n BSR
n+1 1K = Offset* n+1 1K = Offset
n+2 Next Main Instr. n+2 Next Main Instr,
*K = Si 7-Bi
Signed 7-Bit Value PC—~(n + 2) 3K 15t Subr. Instr,
{a) Before Execution {b) After Execution

Figure 4-14 Program Flow for BSR

A2

m-2 SP=~-m — 2

m-1 . m-—1 {n+3)H
SP = m m (n+ 3L

m+ 7€ m+ 7€

ma+2 7A m+2 7A

70
e~ -

PC—— n JSR=8D n JSR
n+ Sy = Subr. Addr, n+1 S$p = Subr. Addr.
n+2 S = Subr. Addr. n+2 S = Subr. Addr.
ne3 Next Main Instr, n+3 Next Main Instr.

e —

(a) Before Execution PC—>5 18t Subr. Instr.

(S formed from
Sy and S)

(b) After Execution

Figure 4-15 Program Flow for JSR (Extended)

m-2 P —m — 2
m—1 m-1 {n+2)H
SP st m m (h+2L
me 7€ m+ 7€
L
- “_/-—\
PC——s n JSR = AD n ISR = AD
a+t K = Offser® net K = Offser
n+2 Next Main Instr. n+2 Next Main Instr.
K = 8-Bit Unsigned Vaiue PC—X +K 15t Subr. Instr.
L

*Contents of Index Register

(a) Bafore Execution (b} After Execution

Figure 4-16 Program Flow for JSR (Indexed)

4

f ‘—_/A
SP—p-m - 2 m-2
m-1 (n+3)H m-—1
m (n+3)L SP e m
m+1 7€ m+1 7€
7A 7A
f L/__
———-—/_
n JSR = BD n JSR = BD
n+1 Sp = Subr. Addr. n+1 Sy = Subr, Addr.
n+2 S = Subr. Addr. n+2 S = Subr. Addr.
n+3 Next Main Instr. PC = n+3 Next Main Instr.
__/_—_—
/ —__/
Last Subr. Instr, Last Subr. instr.
PC —Sn RTS Sn RTS
L —

{a) Before Execution

(b) After Execution

Figure 4-17 Program Flow for RTS

Operation of the Stack Pointer with the Push and Pull instructions
is illustrated in Figures 4-12 and 4-13. The Push instruction (PSHA)
causes the contents of the indicated accumulator (A in this example) to
be stored in memory at the Tocation indicated by the Stack Pointer. The
Stack Pointer is automatically decremented by one following the storage
operation and is "pointing" to the next empty stack Tocation. The Pull
instruction (PULA or PULB) causes the last byte stacked to be Toaded into
the appropriate accumulator. The Stack Pointer is automatically incre-
mented by one just prior to the data transfer so that it will point to
the last byte stacked rather than the next empty location. Note that the
PULL instruction does not "remove" the data from memory; in the example,
1A is still in location (m+1) following execution of PULA. A subsequent
PUSH instruction would overwrite that location with the new "pushed"
data.

45

I'xecution of the Branch to Subroutine (BSR) and Jump to Subroutine
(JSR) instructions causes a return address to be saved on the stack as
shown in figures 4-14 through 4-16. The stack is decremented after each
byte of the return address is pushed onto the stack. For both of these
instructions, the return address is the memory location following the
bytes of code that correspond to the BSR and JSR instruction. The code
required for BSR or JSR may be either two or three bytes, depending on
whether the JSR is in the indexed (two bytes) or the extended (three
bytes) addressing mode. Before it is stacked, the Program Counter is
automatically incremented the correct number of times to point at the
location of the next instruction. The Return from Subroutine instruc-
tion, RTS, causes the return address to be retrieved and loaded into
the Program Counter as shown in Figure 4-17.

There are several operations that cause the status of the MPU to be
saved on the stack. The Software Interrupt (SWI) and Wait for Interrupt
(WAT) instructions as well as the maskable (IRQ) and non-maskable (NMI)
hardware interrupts all cause the MPU's internal registers (except for
the Stack Pointer itself) to be stacked as shown in Figure 4-21. MPU
status is restored by the Return from Interrupt, RTI, as shown in Figure
4-21.

Jump and Branch Operations

The Jump and Branch instructions are summarized in Figure 4-18.
These instructions are used to control the transfer of operation from
one point to another in the control program.

The No Operation instruction, NOP, while included here, is a jump
operation in a very limited sense. Its only effect is to increment the
Program Counter by one. It is useful during program development as a
"stand-in" for some other instruction that is to be determined during
debug. It is also used for equalizing the execution time through al-
ternate paths in a control program.

Execution of the Jump Instruction, JMP, and Branch Always, BRA,
effects program flow as shown in Figure 4-19. When the MPU encounters
the Jump (indexed) instruction, it adds the offset to the value in the
Index Register and uses the result as the address of the next instruc-
tion to be executed. In the extended addressing mode, the address of
the next instruction to be executed is fetched from the two locations
immediately following the JMP instruction. The Branch Always (BRA) in-
struction is similar to the JMP (extended) instruction except that the
relative addressing mode applies. The opcode for the BRA instruction
requires one less byte than JMP (extended) but takes one more cycle to
execute.

46

JUMP AND BRANCH 5 312 0
OPERATIONS MNEMONIC BRANCH TEST H NjZ|ViC
Branch Always BRA None ojio|o]/ejolle
Branch If Carry Clear BCC C=0 oje|oofe]e
Branch If Carry Set BCS c=1 o|lo|e|oje]e
Branch If = Zero BEQ Z=1 olojojejele
Branch If > Zero BGE Nev=0 eleje|ejo]ee
Branch If > Zero BGT Z+(NoV)=0 o|lojeje|ofle
Branch If Higher BHI C+2Z2 =90 olej|e o0
Branch If < Zero BLE Z4+(NeV)=1 ejolojole]|e
Branch If Lower Or Same BLS C+2=1 ejolejoe]e
Branch If < Zero BLT Nev=1 ojoe|ojofel|e
Branch If Minus BM! N=1 olo|ojoelo|®
Branch If Not Equal Zero BNE Z=0 oloe|olele]|®
Branch If Overflow Clear BVC V=0 olejo|ojolp
Branch If Overflow Set BVS v=1 ojelelelele
Branch If Plus BPL N=0 of(ojo]ojo]|e®
Branch To Subroutine BSR ojloejeojeole|p
Jump JMp See Special Operations o|loje|o|e]p
Jump To Subroutine JSR ejlojojoie|y
No Operation NOP Advances Prog. Cntr. Only ojojojoje|s
Return From Interrupt RT! @ -
Return From Subroutine RTS . . o|e »
Software Interrupt Swi See special Operations oloje
Wait for Interrupt WAI ° ®

® (A Load Condition Code Register from Stack. (See Special Operations)

@ (Bitt) Setwhen interrupt occurs. If previously set, a Non-Maskable Interrupt is
required to exit the wait state.

Figure 4-18 Jump and Branch Instructions

41

PC Main Program

PC Main Program Main Program
- n [7E=Jmp N ey
n [SE= IMP n+1 [Ky = Next Address -
INDXD n+1 { K= Offfe' EXTND n+2 Ky = Next Address n+1 K—?ﬂset

S e « o] "2 [Reimion]

*K = Signed 7-bit value
(a) Jump (b) Branch

Figure 4-19 Program Flow for Jump and Branch Instruction

The effect on program flow for the Jump to Subroutine (JSR) and
Branch to Subroutine (BSR) is shown in Figures 4-14 through 4-16. Note
that the Program Counter is properly incremented to be pointing at the
correct return address before it is stacked. Operation of the Branch
to Subroutine and Jump to Subroutine (extended) instruction is similar
except for the range. The BSR instruction requires less opcode than JSR
(2 bytes versus 3 bytes) and also executes one cycle faster than JSR.
The Return from Subroutine, RTS, is used at the end of a subroutine to
return to the main program as indicated in Figure 4-17.

The effect of executing the Software Interrupt, SWI, and the Wait
for Interrupt, WAI, and their relationship to the hardware interrupts
is shown in Figure 4-20. SWI causes the MPU contents to be stacked and
then fetches the starting address of the interrupt routine from the
memory locations that respond to the addresses FFFA and FFFB. Note that
as in the case of the subroutine instructions, the Program Counter is
incremented to point at the correct return address before being stacked.
The Return from Interrupt instruction, RTI, (figure 4-21) is used at
the end of an interrupt routine to restore control to the main program.
The SWI instruction is useful for inserting break points in the control
program, that is, it can be used to stop operation and put the MPU re-
gisters in memory where they can be examined. The WAI instruction is
used to decrease the time required to service a hardware interrupt; it
stacks the MPU contents and then waits for the interrupt to occur, ef-
fectively removing the stacking time from a hardware interrupt sequence.

48

Wait For
Software Interrupt Interrupt
Main Program Main Program

Hardware Interrupt or
Non-Maskable Interrupt (NM1)
Main Program

[

]
| Last Prog. Byte |

. J
e

n | 3F=sw n [3E-wal]
n+1 | NextMain instr. n+l [Next Main lnslrj
\ J
~

Continue Main Prog.
"

Stack

Stack MPU
Register Contents

m — 6 | Condition Code
:> m —5 | Acmitr. B

m—4| Acmitr. A

m — 3} Index Register (Xy)

m — 2| Index Register (X;)

m-—1] PC(n+1)H

m| PCin+ 1)L

Wi HOWR
INT

FFFA FFF8
§ FFFB Y FFF9

WAI NM

Wait Loop

FFFC 1 FFFE
FrF0 Y Frer Y

Interrupt Memory Assignment?
FFF8 | Constant, Hdware | MS
FFF9 Constant, Hdware LS
FFFA | Software Ms
FFFB | Software LS d>
FFFC | Non-Maskable lnt. | MS
FFFD | Non-Maskable Int. | LS

FFFE | Restart Ms
FFFF | Restart Ls

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

Figure 4-20

Set Interrupt
Mask (CCR 4)

First bnstr,

Addr. Formed Load Interrupt
By Fetching Vector Into
2-Bytes From Program Counter
Per. Mem.

Assign.

interrupt Program
| —

]

Program Flow for Interrupts

AQ

m -6 CCR m—-6 CCR
m-—5 ACCB m-5 AccB
m -4 ACCA m -4 ACCA
m-—3 Xn (Index Reg) m—3 Xy
m-2 X {Index Reg) m—2 Xy
m -1 PC(n+1)H m -1 PCH
m PC(n+1)L SP—tm m PCL

___V"“ 7€
/

n+t Next Main Instr. PC—®= 0+ 1 Next Main Instr.
Sn Last Inter. Instr. Last Subr. Instr,
PC —= RTI Sn RTI
{a) Before Execution {b) After Execution
Figure 4-21 Program Flow for RTI
The conditional branch instructions, Figure 4-22, consist of seven
pairs of complementary instructions. They are used to test the results

of the preceding operation and either continue with the next instruc-
tion in sequence (test fails) or cause a branch to another point in the
program (test succeeds).

Four of the pairs are used for simple tests of status bits N, Z,

V, and C:
(1)

(2)

Branch On Minus (BMI) and Branch On Plus (BPL) tests the sign
bit, N, to determine if the previous result was negative or
positive, respectively.

Branch On Equal (BEQ) and Branch On Not Equal (BNE) are used
to test the zero status bit, Z, to determine whether or not
the result of the previous operation was equal to zero. These
two instructions are useful following a Compare (CMP) instruc-
tion to test for equality between an accumulator and the oper-
and. They are also used following the Bit Test (BIT) to de-
termine whether or not the same bit positions are set in an
accumulator and the operand.

90

(3) Branch On Overflow Clear (BVC) and Branch On Overflow Set (BVS)
tests the state of the V bit to determine if the previous oper-
ation caused an arithmetic overflow.

(4) Branch On Carry Clear (BCC) and Branch On Carry Set (BCS) tests
the state of the C bit to determine if the previous operation
caused a carry to occur. BCC and BCS are useful for testing
relative magnitude when the values being tested are regarded
as unsigned binary numbers, that is, the values are in the range
00 (lowest) to FF (highest). BCC following a comparison (CMP)
will cause a branch if the (unsigned) value in the accumulator
is higher than or the same as the value of the operand. Con-
versely, BCS will cause a branch if the accumulator value is
lower than the operand.

The fifth complementary pair, Branch On Higher (BHI) and Branch On
Lower or Same (BLS) are in a sense complements to BCC and BCS. BHI tests
for both C and Z = 0; if used following a CMP, it will cause a branch if
the value in the accumulator is higher than the operand. Conversely,

BLS will cause a branch if the unsigned binary value in the accumulator
is lower than or the same as the operand.

The remaining two pairs are useful in testing results of operations
in which the values are regarded as signed two's complement numbers.
This differs from the unsigned binary case in the following sense: In
unsigned, the orientation is higher or lower; in signed two's complement,
the compariscn is between larger or smaller where the range of values
is between -128 and +127.

Branch On Less Than Zero (BLT) and Branch On Greater Than Or Equal
To Zero (BGE) test the status bits for N+ V=1and N + V = 0, respec-
tively. BLT will always cause a branch following an operation in which
two negative numbers were added. In addition, it will cause a branch
following a CMP in which the value in the accumulator was negative and
the operand was positive. BLT will never cause a branch following a
CMP in which the accumulator value was positive and the operand negative.
BGE, the complement to BLT, will cause a branch following operations in
which two positive values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE) and Branch
On Greater Than Zero (BGT) test the status bits for Z(@ (N+V)=1and
Z+ (N®V) =0, respectively. The action of BLE is identical to that
for BLT except that a branch will also occur if the result of the pre-
vious result was zero. Conversely, BGT is similar to BGE except that
no branch will occur following a zero result.

51

BMI
BPL :

BvC :
BVS :

BHI
BLS :

Figure 4-22 Conditional Branch Instructions

BEQ :

BLT :
BGE :

Z=1 ;
Z=¢ ;

Nev=1 ;
N&V=9 ;

Z+{NBV)=1 ;
Z+(N®V)=¢ ;

52

@

V. ARITHMETIC OPERATIONS
NUMBER SYSTEMS

The ALU (Arithmetic Logic Unit) always performs standard binary addition of

two eight bit numbers with the numbers represented in 2's complement form.

How

ever, the MPU instruction set and hardware flags permit arithmetic operation us

any of four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2's complement number in the

range -127 to +127:

+ 26 25 24 23 22 21 20

b7 b6 b5 b4 b3 b2 b] b0

1 00 0 0O0 01 (-127 in 2's complement representation)
T1T 111111 (-1 in 2's complement representation)

0 00 0O0OOTG OO (0 in 2's complement representation)

0 000 0 O0O01 (+1 in 2's complement representation)
o1 111111 (+127 in 2's complement representation)

(2) Each byte can be interpreted as an unsigned binary number in the
range 0 to 255:

27 26 25 24 23 22 21 20

b_b b b b_b b b
76543210

0 00OO0O0OOP O (0 in unsigned binary)
1111 1111 (255 in unsigned binary)

(3) Each byte contains one 4-bit BCD number in the 4 LSBITS, the 4MS
bits are zeros. This is referred to as unpacked BCD and can re-
present numbers in the range of 0-9:

27 26 25 24 23 22 21 20

b b b b b
b, bg P b4 3210
00 00O0GOGO OO (BCDO)
000O0O0T1O0 1 (BCS5)
0000100 1 (BCDY)
. i’

Must always
be zero

53

ing

(4) Each byte can be thought of as containing two 4-bit binary coded
decimal (BCD) numbers. With this interpretation, each byte can
represent numbers in the range 0 to 99:

27 2% 25 2% 23 2% 51 O

0 0000GO0G 0O (BCDOO)
001001 1 1 (B 27)
100171001 (BCD99)

Each of these number systems will be illustrated with programming ex-
amples after the condition code flags and instruction set have been intro-
duced in more detail.

THE CONDITION CODE REGISTER
During operation, the MPU sets (or clears) flags in a Condition Code
Register as indicated below:

bg by bg by by by

EARSEIEANANS

H = Half-carry; set whenever a carry from b3 to by of the result is genera-
ted; cleared otherwise.

Condition Code Register

I = Interrupt Mask; set by an interrupt or SEI instruction; cleared by CLI
instruction. (Normally not used in arithmetic operations).

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.
Z = Zero; set if result = 0; cleared otherwise.

V - oVerflow; set if there was arithmetic overflow as a result of the oper-
ation; cleared otherwise.

C - Carry; set if there was a carry from the most significant bit (b7) of
the result; cleared otherwise.

OVERFLOW

The description of most of the condition code bits is straight forward.
However, overflow requires clarification. Arithmetic overflow is an indica-
tion that the last operation resulted in a number beyond the +127 range of
an 8-bit byte. Overflow can be determined by examining the sign bits of the
operands and the result as indicated in Table 5-1 where the results for ad-
dition of A + B is shown.

54

Row az b< ry v

1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0
5 1 0 0 0 (A+B) =R
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0

TABLE 5-1: Overflow for Addition

If the sign bits of the operands, ay and by, are different (rows 3 through

6 of the Table) no overflow can occur and %he V flag is clear after the oper-
ation. If the operand sign bits are alike and the result exceeds the byte
capacity, the sign bit of the result (r,)} will change and the overflow bit
will be set. This is illustrated in the following example. The example
follows actual ALU operation in that the starting number A is initially in
the accumulator but is replaced by the result of the current operation.

V76543210
000 1T 1 01 1 0 A=+54

-121; (negative numbers are in 2's complement
notation)

100001118

0101111071 Ry=A+B=-67; (signs of A & B different; no
overflow)

010011100 R-= R0 + B = -100; (Signs alike but byte capacity
not exceeded; no overflow)

10071711 0 0 Ry=-100;
1110000 0 B=-32

101 1 1 1 1 0 0 Rp=+124 (Signs of Ry & B alike and sign of result
occurred)

55

Here the capacity of the register has been exceeded and the result is +124
rather than -32. Overflow is said to have occurred.

In subtraction operations, the possibility of overflow exists whenever
the operands differ in sign. Overflow conditions for A - B are illustrated
in Table 5-2.

Row ay E r, v
1 0 0 0 0
2 0 0 1 1
3 0 1 0 0
4 0 1 1 0 (A-B)=R
5 1 0 0 0
6 1 0 1 0
7 1 1 0 1
8 1 1 1 0
TABLE 5-2

Overflow for Subtraction

Note that Table 5-2 is identical to the addition table except that b, has
been replaced by b,. This is explained by the fact that the ALU per;orms
subtraction by add?ng the negative of the subtrahend B to the minuend A.
Hence, the ALU first forms the 2's complement of B and then adds. The sub-
traction table with b7 negated then reflects the sign bits of two numbers
that are to be added.’ If ay and b7 are alike, overflow will occur if the
byte capacity is exceeded.

THE ARITHMETIC INSTRUCTIONS

Table 5-3 summarizes the instructions used primarily for arithmetic
operations. The effect of each operation on memory and the MPU's Accumu-
lators is shown along with how the result of each operation effects the Con-
dition Code Register.

The carry bit is used as a carry for addition and as a borrow for sub-
traction and is added to the Accumulators with the Add With Carry Instruc-
tions and subtracted from the Accumulators in the Subtract With Carry in-
structions.

36

L/

ADDRESSING MODES COND. COOE REG.
BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (Al vegister labals al3lz2|ph]a
OPERATIONS mMNEmoniC fop [~ | #fop |~ [& |or [~ #jop|~) slop|~1 & refer to contents) Hl1|nfz]vic
Add ADDA (88 [2 |2 f98 [3 [2{ae|5!{2|B8B |43 AsM A tief t] ettt
ADDB ce|2)2(|o8|3 2 leB |5 |2 |FB} 4|3 B+M—~8 Plefs{slit]t
Add Acmitrs ABA w|2]1)As8-a IECIRARAIAR]
Add with Carry ADCA 89 |2 | 2[9 |32 |A3|5}2|B34])3 A+M+C—A tje|t{t}tyt
AOCB €9 (2| 209|312 |E3 |5 |2 [FI |43 B+M+C—~+B tlef tlsijtit
Complement, 1’5 Com 63 (72|16]|3 MM efolt[t|R|S
COMA al2|1]a-a eleft|tIR|S
coms s3(2|1]|8~8 efelt|tiR]s
Complement, 2's NEG 6017 (2|6 |3 00 -M—M sleof 11 tIOD|G
{Negate NEGA 4|2 |1]o0-a~a ejoft|t{D|@)
NEGB §¢ | 2{1}00-8-~8 ole| 1t OO
Decimal Adjust, A DAA 19 |2 1 :.:‘(::vae::taﬂfi;\:l:i:\dd4 of BCD Characters ol |t @
Rotate Left ROL 69 {7 (2]|19}686 |3 M — e oleftiti®:
AOLA wlats A'EQ*LUIDID*—! oo t]t®1
ROLB wlzfa|s) © 7™ eleft]:|@®|:
Ratate Right ROR 6 |7 | 2|7 |6 |3 M l o ofleltti@®|?
RORA w2 | |al Lo« oo eleltiti®|t
RORB sl2|ifsl © 7 0% ole|t]t|®]:
Shilt Lett, Arithmetic ASL 6817|2116 |3 L} - eleft!ti®
ASLA 8l2(1]A 0 « OIoIgh« o oleltit®|
€ 57)
ASLE 58218 ofe|1|t|®|t
Shift Right, Arithmatic ASR 67 7 fzfmle|s [. oleftftl®t
ASRA 71211 A]C&E!IUI\-D eleltit|®t
by b c
ASRB s7{2]|1]8 ele|titI®t
Shift Right, Logic. LSR 64 |7 12{1 6|3 M - elelpiti®|t
LSRA “l2 | A] 0~IOTOD - O ejelR|iLI®f?
LSRB 54 [2]1]8 N eielr|ti®l?
Subtract SUBA 80 | 2|2 (9% |32 A5 |2}80| 4|3 A-M-A ele| st t
suss c)|2)2|00|3 2 fEO |5 [2|F0)43 B-M~B o(o|t]t t
Subract Acmitrs. SBA 10 |2 1|A-B-A eo|ejtjl t
Subtr. with Carry SBCA 822|279 |3{2(Aa2(|5)|2{B2|4]|3 A-M-C-—A IR AES h
$BCB €22 |2 (D23 |2 |€2)5 |2fF2[a{3 B-M-C—8 e|loft]|?t 1
LEGEND: 00 Byte= Zero; CONDITION CODE REGISTER NOTES:
QP Operation Code (Hexadecimal); H Halt-carry from bit 3; (Bit set if test is true and cleared otherwise)
~ Number of MPU Cycles; 1 interrupt mask @ (BitV) Test: Result = 100000007
Number of Program Bytes; N Negative (sign bit) @ (BitC) Test: Result = 000000007
+ Arithmetic Plus; r4 Zero (byte) @ (BitC) Test: Decimal value of mast significant BCD Character greater than nine?
= Arithmetic Minus; V. Overflow, 2's comptement {Not cleared if previously set.)
= Boolean AND; € Cany frombit 7 (® (BitV} Test: Set equal to result of N C after shift has accurred.
Mgp Contents of memory location R Reset Always !
pointed to be Stack Pointer; s Set Always
+ Boolean Inclusive OR; H Test and set if true, cleared otherwise
© Boolean Exclusive OR; . Not Affected
4 Complement of M; CCR Condition Code Register
= Teanster tnto; LS Least Significant
0 Bit = Zeso; MS Most Significant

Table 5-3 Arithmetic Instructions

57

The Decimal Adjust instruction, DAA, is used in BCD addition to adjust
the binary results of the ALU. When used following the operations, ABA,
ADD, and ADC on BCD operands, DAA will adjust the contents of the accumulator
and the C bit to represent the correct BCD Sum.

Table 5-4 shows the details of the DAA instruction and how it affects
and is effected by the Condition Code Register bits.

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set the carry
bit, as indicated in the following table:

State of Upper Initial Lower Number Added State of
C-Bit Half-Byte Half-Carry Half-Byte to ACCA C-Bit
Before DAA {Bits 4—7) H-Bit (Bits 0-—-3) by DAA After DAA
(Col. 1) (Col. 2) (Col. 3) (Col. 4) (Col. 5) (Col. 6)
0 0-9 0 0-9 00 0
0 0--8 0 A—F 06 0
0 0-9 1 0-3 06 0
o] A-F 0 0-9 60 1
0 9-F 0 A—F 66 1
0 A—F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

NOTE: Columns (1) to (4) of the above table represent ali possible cases which can result from
any of the operations ABA, ADD, or ADC, with initial carry either set or clear, applied
to two binary-coded-decimal operands. The table shows hexadecimal values.

Effect on Condition Code Register:
H Not affected.
Not affected.
Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not defined.

Set or reset according to the same rule as if the DAA and an immediately preceding ABA,
ADD, or ADC were replaced by a hypothetical binary-coded-decimal addition.

O<NZ -

Table 5-4 Effect of DAA Instruction

58

L’/‘

L//

Use of Arithmetic Instructions

Typical use of the arithmetic instructions is illustrated in the fol-

lTowing examples:

The ABA instruction adds the contents of ACCB to the contents of ACCA:

ACCA 10101010 ($AA)

ACCB 11001100 (s$cc)

ACCA 01110170 ($76) with a carry.
CARRY 1

The ADCA instruction adds the operand data and the carry bit to ACCA:

ACCA 101 01 01 0 $AA
OPERAND DATA 1T 1001100 CC
CARRY
ACCA 01T 1T 1T 0 1T 1 1 §77 with carry
CARRY !

In both of these examples, the 2's complement overflow bit, V, will be

set as shown in Table 5-5.

2's complement by b7 b7
overflow carry ACC AcC OPERAND (OR ACCB)
after after after before before
0 0 0 0 0
1 0 1 0 0
0 0 1 0 1
0 1 0 0 1
0 0 1 1 0
0 1 0 1 0
1 1 0 1 1
0 1 1 1 1
TABLE 5-5

Truth Table for "Add with Carry"

RO

The SUBA instruction subtracts the operand data from ACCA:
b bbb b bbb
ACCA 011001 0 1 $65
OPERAND DATA 1000 01 1 1 $87

ACCA T 1T 0 1 T 1T 1T 0 $DE with a borrow
BORROW 1

The SBCA instruction subtracts the operand and the borrow (carry) it from
ACCA.

b bbbbbbeb

ACCA 1 01 1 1 1 0 0 $BC
OPERAND DATA 0 1 1 1 1 0 1 1 $7B
BORROW (carry) 1 C=1

0 1 0 0 0 0 0 0 $40 no borrow
BORROW 0

The 2's complement overflow and carry bits are set in accordance with
Table 5-6 as a result of a subtraction operation.

2's b7 b, by
complement carry ACCA ACCA OPERAND
overflow after after before before
0 0 0 0 0
0 1 1 0 0
0 1 0 0 1
1 1 1 0 1
1 0 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 1 1
TABLE 5-6

Truth Table for "Subtract with Borrow"

60

ADDITION AND SUBTRACTION ROUTINES

Most applications will require that the arithmetic instruction set be
combined into more complex routines that operate on numbers larger than one
byte. If more than one number system is used, routines must be written for
each, or conversion routines to some common base must be used. In many
cases, however, it is more efficient to write a specialized routine for
each system requirement, i.e., hexadecimal (HEX) versus unpacked BCD multi-
plication, etc. In this section, several algorithms will be discussed with
specific examples showing their implementation with the M6800 instruction
set.

The basic arithmetic operations are binary addition and subtraction:

ALPHA + BETA = GAMMA ALPHA - BETA = GAMMA
LDAA ALPHA LDAA ALPHA
ADDA BETA SUBA BETA
STAA GAMMA STAA GAMMA

These operations are so short that they are usually programmed in line
with the main flow. Addition of single packed BCD bytes requires only one
more instruction. The DAA instruction is used immediately after the ADD, ADC,
or ABA instructions to adjust the binary generated in accumulator A (ACCA) to
correct BCD value:

LDAA ALPHA
ADDA BETA
DAA
STAA GAMMA
Carry ACCA
X 67 0110 01N =ACCA
X +79 carry 0111 1001 =MEMORY
0 146 0 1110 0000 =ACCA binary result
46 1 0100 0110 =ACCA after DAA; the carry bit will
also be set because of the BCD
carry.

61

Since no similar instruction is available for BCD subtraction, 10's
complement arithmetic may be used to generate the difference. The follow
routine performs a BCD subtraction of two digit BCD numbers:

LDAA #$99

SUBA BETA (99-BETA) = ACCA

SEC carry = 1

ADCA ALPHA ACCA + ALPHA + C = ACCA

DAA DECIMAL ADJUST (-100)

STAA GAMMA ALPHA-BETA = GAMMA

The routine implements the algorithm defined by the following equations.

ALPHA - BETA = GAMMA

ALPHA + (99-BETA) - 99 = GAMMA 9's COMPLEMENT OF BETA

ALPHA + (99-BETA + 1) - 100 = GAMMA 10's COMPLEMENT OF BETA
One is added to the 9's complement of the subtrahend by setting the carry bit
to find the 10's complement of BETA which is then added to the minuend ALPHA
and saved in ACCA. The DAA instruction adjusts the result in ACCA to the
proper BCD values before storing the difference in GAMMA. Since 100 has been
added (99 + 1) to the subtrahend by finding the 10's complement, 100 must

also be subtracted. This is accomplished by the DAA instruction since the
resulting carry is discarded.

62

Multiple precision operations mean that the data and results require

more than one byte of memory.

The simplest multiple precision routines are

addition and subtraction of 16 bit binary or 2's complement numbers. This
is often called double precision since 2 consecutive bytes are required to

store 16 binary bits of information.

functions:

LDAA
LDAB
ADDA
ADCB
STAA
STAB

LDAA
LDAB
SUBA
SBCB
STAA
STAB

ALPHA + 1
ALPHA
BETA + 1
BETA
GAMMA +1
GAMMA

ALPHA + 1
ALPHA
BETA + 1
BETA
GAMMA + 1
GAMMA

The following routines illustrate these

ADD LS BYTES
ADD MS BYTES WITH CARRY FROM LS BYTES

SUBTRACT LS BYTES
SUBTRACT MS BYTES WITH BORROW FROM LS BYTES

63

Four digit BCD addition can be accomplished in a similar fashion with
the use of the DAA instruction. The following routine has been expanded to
a 2N digit addition where N is the max number of packed BCD bytes used:

NOTE:

START CLC
LDX #N

LOOP LDAA ALPHA, X
ADCA BETA,X
DAA
STAA GAMMA, X
DEX
BNE LooP

ALPHA, BETA, and GAMMA must be in the direct addressing range and
adjusted for offset for this example (See indexed address1ng for
further details).

This routine uses indexed address to select the bytes to be added,
starting with the least significant. The carry is cleared at the start and
is affected only by the DAA and ADCA instructions. This allows the carry to
be included in the next byte addition.

Expanding subtraction to md]tip]e precision is accomplished in a manner
similar to the single byte case; 10's complement arithmetic is used. A
suitable routine is shown in the Assembly Listing of Figure 5-7.

64

00010
00030
00060
00070
00080
00090
00092

00094
00095
00096

00097
00097
00097
00097
00097

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240

00251
00252

00254

0100

0100
0103
0105
0107
0109
010A
010C
010F
0110
0112
0114
0115
0117
0118
0MA

0000
0008
0010

CE
86
A0
A7
09
26
CE
0D
A6
A9
19
A7
09
26
39

SYMBOL TABLE

DSUB

0008
99
00
10

F7
0008

08
10

10
Fé6

0100 DSUB1
SUBTRH 0000

NAM

OPT
SUBTRH EQU
MINUEN EQU
RSLT EQU

ORG
* DECIMAL

* THIS ROU
* FROM THE
* DIFFEREN

* THE MEMO
*

* SUBTR
MINUE
* DIFFE

DSUB LDX
DSUBT LDA
SuB
STA
DEX
BNE
LDX
SEC
DSUB2 LDA
ADC
DAA
STA
DEX
BNE
RTS

* THE EXE
* 384 MPU
END

0103 DSUB

DSUBT6
SYMB
0
8
16
256
SUBTRACT SUBROUTINE FOR 16 DECIMAL DIGIT

TINE SUBTRACTS THE SUBTRAHEND ("SUBTRH")
MINUEND ("MINUEN") AND PLACES THE
CE IN "RSLT".

RY ALLOCATION IS AS FOLLOWS:
ADDRESS RANGE LSB
AHEND 1-8 8
ND 9-16 16
RENCE 17-24 24

ADDRESS VALUES ARE DECIMAL

#8 SET BYTE COUNTER
A #$99
A SUBTRH,X FIND 9'S COMPLEMENT
A RSLT,X USE "RSLT" AS TEMP STORE
DECREMENT BYTE COUNTER
DSUBT ~ LOOP UNTIL LAST BYTE
#8 RESTORE BYTE COUNTER
SET CARRY TO ADD 1 TO COMPL
A MINUEN,X LOAD MINUEND
A RSLT,X ADD COMPLEMENT SUBTRAHEND
DECIMAL ADJUST
A RSLT,X STORE DIFFERENCE
DECREMENT BYTE COUNTER
DSUB2 LOOP UNTIL LAST BYTE
RETURN TO HOST PROGRAM

CUTION TIME OF THIS SUBROUTINE IS
CYCLES EXCLUDING THE RTS.

2 0110 MINUEN 0008 RSLT 0010

Figure 5-7 Decimal Subtract Assembly Listing

65

This routine first finds the 9's complement of the subtrahend and stores
it in the result buffer. The carry is then set to add 1 to the 9's complement.,
making it the 10's complement which is then added to the minuend and stored
in the result buffer. Note that this routine has 2 Toops, the first to cal-
culate the 9's complement, the second to add and decimal adjust the result.
The decimal add and subtract routines operate on 10's complement numbers as
well as packed BCD numbers. A number is known to be negative in 10's com-
plement form when the most significant digit in the most significant byte
is a 9. When in the 10's complement form, this digit is reserved for the
sign and the actual number of magnitude digits is one less than 2 times the
number of bytes. A routine similar to the above subtract program will con-
vert the 10's complement number to decimal magnitude with sign for display
or output purposes:

DCONV CLR SINFLG CLEAR SIGN FLAG
LDAA RESULT+1 GET MSBYTE
BPL END POSITIVE:END
LDX #8 NEGATIVE:
DCONV1 LDAA #$99

SUBA RSLT,X SUBTRACT RESULT FROM
STAA RSLT,X ALL 9's INCLUDING
DEX SIGN DIGIT
BNE DCONV1
LDX #8
CLRA
SEC
DCONV2 ADCA RSLT,X ADD 1 TO RESULT
DAA

STAA RSLT,X

DEX

BNE DCONV2

DEC SINFLG SET SIGN FLAG
END RTS RETURN

The sign flag would be used to indicate plus when clear and minus when not clear.

66

MULTIPLICATION
Multiplication increases programming complexity. In addition to the
addition and subtraction instructions, the use of the shift and rotate in-
structions is required. The general algorithm for binary multiplication
can be illustrated by a short example:
(1) Test the least significant multiplier bit for 1 or 0.
(a) If it is 1, add the multiplicand to the result, then 2.
(b) If it is 0, then 2.
(2) shift the multiplicand left one bit.

(3) Test the next more significant multiplier bit; then 1a or 1b.

DECIMAL BINARY
13 1101 MULTIPLICAND
1 1011 MULTIPLIER LSB = 1; ADD MULTIPLICAND TO RE-
SULT (A)
1101 (A)
13 1101 (B) SHIFT MULTIPLICAND LEFT ONE BIT (B)
100111 (C) LSB+1 = 1; ADD MULTIPLICAND TO RESULT (C)
13 1101 (D) SHIFT MULTIPLICAND LEFT ONE BIT (D)
1101 (E) LSB+2 = 0; SHIFT MULTIPLICAND LEFT 1 (E)
143 10001111 (F) LSB+3 = 1; ADD MULTIPLICAND TO RESULT (F)
128 + 15 = 143

Signed binary numbers in 2's complement form cannot be multiplied without
correcting for the cross product terms which are introduced by the 2's comple-
ment representation of negative numbers. There is an algorithm which generates
the correct 2's complement product. Since positive binary numbers are correct
2's complement notations, they also may be multiplied using this procedure.

It is called Booth's Algorithm. Simply stated the algorithm says:

(1) Test the transition of the multiplier bits from right to left as-
suming an imaginary O bit to the immediate right of the multiplier.

(2) If the bits in question are equal, then 5.

(3) If there is a 0 to 1 transition, the multiplicand is subtracted from
the product, then 5.

67

product, then 5.

Shift the

If there 1s a 1 to 0 transition, the multiplicand is added to the

product right one bit with the MSBit remaining the same.

(This has the same effect as shifting the multiplicand left in the

previous example).

Go to 1 to test the next transition of the multiplier.

The following example (Figure 5-8) shows the typical steps involved in an

actual calculation.

and 5-10, respectively.

Sign Bits 5 Bits

111101
111011

0000001111,

10 Bits

00

- O

000
000

000
000
000
111

Tt
111
goo
000
00000
00000

1
0000 11
00,0 ,

Sign

- -
- O 00 |[OCO0|O =
- O

= = 0|00 O =

O = -

A flow chart and assembl
tion program using the M6800 instruction set

y listing for a multiplica-
are shown in Figures 5-9

-3

+15

Multiplicand
Multiplier

0 to 1; subtract by adding the 2's
complement of the multiplicand

PRODUCT

Shift PRODUCT

1 to 1 shift PRODUCT
1 to 0 add

PRODUCT
Shift PRODUCT
0 to 1 subtract

PRODUCT
Shift PRODUCT
1 to 1 shift
1 to 1 shift

Figure 5-8 Multiplication Using Booth's Algorithm

68

MULT 16

Clear the Working Registers
This Includes the Previous L.S Bit
of the Muitiplier Test Byte
Initialize the Shift Count to 16

Does the

LS Bit of the

Multiplier = the

Previous LS Bit
?

Does

the LS Bit

of the Muitiplier
=07

Add the Multiplicand
to the Product with
the MS Bytes Lines Up

Subtract the Muitiplicand
from the Product with
the MS Bytes Lined Up

\

Return
from
Subroutine

Y

Clear the Previous
LS Bit of the Muitiplier Taest Byte

Shift the Multiplier Right One
Bit with the LS Bit Going into
the LS Bit of the
Multiplier Test Byte

l

Shift the Product Right One Bit,
the MS Bit Remaining the Same

[

Decrement the
Shift Counter

Does
the Shift
Counter
=0?

Figure 5-9 Fiow Chart for Booth's Algorithm
69

nnn1n NAM MULTI6

00020 OPT NOPAGE

00030 *

00040 * THIS ROUTINE MULTIPLIES TWO 16 BIT 2'S

00050 * COMPLIMENT NUMBERS USING BOOTH'S ALGORITHM
00060 *

00070 * THE MULTIPLIER = Y = Y(MSB),Y(LSB) = Y,Y+]
00080 * THE MULTIPLICAND =XX=XX{MSB),XX(LSB) = XX,XX+1
n0090 * THE PRODUCT = U = U(MSB),U+1,U+2,U+3

00100 * THE TEST BYTE FOR Y(LSB-1) = FF

00110 *

00120 0080 ORG $80

00130 0080 NNN2 Y RMB 2

00140 0N82 0002 XX RMB 2

00150 0084 0004 U RMB 4

00160 0088 NON1 FF RMB 1

00170 *

00180 * THE MULTIPLIER AND THE MULTIPLICAND MUST BE
00190 * STORED IN Y AND XX RESPECTIVELY, THEN A JSR TO
00200 * MULT16 WILL GENERATE THE 2'S COMPLIMENT PRODUCT
00210 * OF Y AND XX IN U.

00220 *

00230 * THE MULTIPLICAND WILL BE UNCHANGED, THE

00240 * MULTIPLIER WILL BE DESTROYED.

00250 *

00260 0400 ORG $400

Figure 5-10 Assembly Listing for Booth's Algorithm (Sheet 1 of 2)

10

00270 0400 CE 0005 MULT16 LDX #5 CLEAR THE WORKING REGISTERS
00280 0403 4F CLR A
00290 0404 A7 83 LP1 STA A U-1,X

00300 0406 09 DEX

00310 0407 26 FB BNE LP1

00320 0409 CE 0010 LDX #16 INIT'L SHIFT COUNTER TO 16
00330 040C 96 81 LP2 LDA A Y+1 GET Y(LSBIT)

00340 040E 84 01 AND A #1

00350 D410 16 TAB SAVE Y(LSBIT) IN ACCB
00360 0411 98 88 EOR A FF DOES Y(LSBIT) = Y(LSB-1) ?
00370 0413 27 1D BEQ SHIFT YES: GO TO SHIFT ROUTINE
00380 0415 5D TST B NO: DOES Y(LSBIT) = 0.2
00390 0416 27 OE BEQ ADD YES: GO TO ADD ROUTINE
00400 0418 96 85 LDA A U+l NO: SUBTRACT MULTIPLICAND
00410 041A D6 84 LDAB U PRODUCT WITH THE MSBYTES
00420 041C 90 83 SUB A XX+1 LINED UP

00430 041E D2 82 SBC B XX

00440 0420 97 85 STA A U+1

00450 0422 D7 84 STABU

00460 0424 20 OC BRA SHIFT THEN GO TO SHIFT ROUTINE
00470 0426 96 85 ADD LDA A U+1 ADD THE MULTIPLICAND TO THE
00480 0428 D6 84 LDA B U PRODUCT WITH THE MSBYTES
00490 042A 9B 83 ADD A XX+1 LINED UP

00500 042C D9 82 ADC B XX

00510 042E 97 85 STA A U+1

00520 0430 D7 84 STABU

00530 0432 7F 0088 SHIFT CLR FF CLEAR THE TEST BYTE

00540 0435 76 0080 ROR Y SHIFT THE MULTIPLIER RIGHT
00550 0438 76 0081 ROR Y+1 ONE BIT WITH THE LSBIT
00560 043B 79 0088 ROL FF INTO THE LSBIT OF FF

00570 043E 77 0084 ASR™ U SHIFT THE PRODUCT RIGHT ONE
00580 0441 76 0085 ROR U+l BIT, THE MSB REMAINING THE
00590 0444 76 0086 ROR U+2 SAME

00600 0447 76 0087 ROR U+3

00610 044A 09 DEX DECREMENT THE SHIFT COUNT
00620 044B 26 BF BNE LP2 IF NOT O CONTINUE

00630 044D 39 RTS

00640 END

Figure 5-10 Assembly Listing for Booth's Algorithm (Sheet 2 of 2)

n

DIVISION

A flow chart for binary division is shown in Fiqure 5-11. The
assembly listing of the program is given in Figure 5-12.

The algorithm used for this straight forward binary division is as
follows:

(1) Left justify the divisor byte.

(2) If the MS byte of the dividend is less than the divisor byte, shift quo-
tient Teft one bit with the LS bit = 0; then 4.

(3) If the MS byte of the dividend is greater than or equal to the divisor,
(2)shift the quotient left one bit with the LS Bit = 1; (b) subtract the
divisor from the MS byte of the dividend, the result being stored in the
MS byte of the dividend; then 4.

(4) Shift the dividend left one bit with the LS Bit = 0, and the MS Bit going
into the carry.

(5) If the carry is set, go to 3a.

(6) If the carry is not set, go to 2a.

The process continues until the number of quotient shifts equals 8 +
number of shifts required to left justify the divisor.

12

XKDIVD DVDEND

Initiatize Shift Count'to 8 (S = B) | Subtract 9 from Saved Shift Count l

Clear Quotient Huffers

R

Result

Increment Shift Count (S) Less t?han 4
+1

Subtract 4
S=85

from Result

Divisor = 0

Store Resuit in Remainder
Displacement Buffer

LSB Goes into Carry

NO
Left Shift sor
DVDERR

[Store $FF in Quotient]

DVDEND
Save Shift Count for Determining

the Offset of the Remainder
Shift Divisor Back Right One Bit

Divisor is Now Left
Justified and the Shift
Count is in ACCB

NO

-

Shift Quotient Left One Bit Shift Quotient Left One Bit

with LSB = 1 with LSB = 0
Subtract: Dividend (MS Byte) =

Dividend (MS Byte) — Divisor

[

T

Decremsem SM“; Count

DVDEND

NO

Shift Dividend Left One Bit with:
LSB = 0 and MSB into Carry

Carry =

Figure 5-11 XKDIVD Flow Chart
3

00100
00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240

5900

% % ok % % % ok % ok Ok ¥ ok % F R ok ¥ ¥ ¥ F *

OPT L

NAM XKDIVD
OPT NOPAGE
ORG B5900

SUBROUTINE TO DIVIDE AN UNSIGNED 4 DIGIT
HEX NUMBER [16 BIT BINARY] BY AN UNSIGNED
2 DIGIT HEX NUMBER [8 BIT BINARY].

THE DIVISOR = X = XKDVSR = [F9]
THE DIVIDEND = Y(M),Y(L)
=XKDVND , XKDVND+1
=[FA,FB]
THE QUOTIENT = Q(M),Q(L)
=XKQUOT, XKQUOT+1
=[FC,FD]
THE SHIFT COUNTER = S = ACCB
THE LEFT DISPLACEMENT OF THE REMAINDER = EKD%PL
= [FE

THE DIVISOR AND THE DIVIDEND MUST BE LOADED
INTO XKDVSR AND XKDVND,XKDVND+1 RESPECTIVELY
THEN A JSR TO XKDIVD.

THE REMAINDER WILL BE IN Y(M) [XKDVND],
SHIFTED LEFT THE # OF BITS INDICATED IN XKDSPL
THE DIVISOR WILL BE BINARILY LEFT JUSTIFIED

Figure 5-12 XKDIVD Assembly Listing (Sheet 1 of 2)

4

[

00260 5900 C6 08 XKDIVD LDA B #8 INIT'L S=8

00270 5902 7F 00FC CLR XKQUOT ZERO QUOTIENT BUFFER
00280 5905 7F 0OFD CLR XKQUOT+1

00290 5908 5C DVDLOP INC B 5-S+1

00300 5909 C1 10 CMP B #16

00310 590B 2E 34 BGT DVDERR IF S>16 DIVIDE ERROR
00320 590D 73 00F9 ASL XKDVSR IF S<16 LEFT SHIFT DIVISOR
00330 5910 24 Fé6 BCC DVDLPO IF C=0 CON'T LOOP

00340 5912 D7 FE STA B XKDSPL IF C=1 XKDSPL = SHIFT COUNT
00350 5914 76 OOF9 ROR XKDVSR SHIFT THE DIVISOR BACK 1
00360 * SHIFT COUNT NOW IN ACCB
00370 * ‘ DIVISOR LEFT JUST. IN X
00380 5917 96 FA LDA A XKDVND

00390 5919 91 F9 DVDLPT CMP A XKDVSR IF THE DIVIDEND<DIVISOR
00400 591B 25 0D BCS DVNSUB DON'T SUBTRACT

00410 591D OD DVDLP2 SEC IF THE DIVIDENT >OR=DIVISOR
00420 591E 79 0OFD ROL XKQUOT+1 SHIFT Q LEFT 1 BIT

00430 5921 79 OOFC ROL XKQUOT ~ WITH LSB = 1

00440 5924 90 F9 SUB A XKDVSR Y(M) = Y(M}-X

00450 5926 97 FA STA A XKDVND

00460 5928 20 07 BRA DVSHFT

00470 592A 0C DVNSUB CLC SHIFT Q LEFT WITH

00480 592B 79 OOFD ROL XKQUOT+1 LSB = 0

00490 592E 79 OOFC ROL XKqQuoT

00500 5931 5A DVSHFT DEC B S =S-1

00510 5932 27 12 BEQ DVDEND IF S = 0 STOP

00520 5934 0C CLC IF S>0 SHIFT DIVIDEND
00530 5935 79 0OFB ROL XKDVND+1 LEFT ONE BIT; LSB=0

00540 5938 79 OOFA ROL XKDVND ~ MSB INTO CARRY

00550 593B 95 FA LDA A XKDVND

00560 593D 25 DE BOA DVDLP2 IF C = 1 GO TO LOOP 2
00570 593F 20 D8 BRA DVDLP 1T GO TO LOOP 1

00580 5941 CE FFFF DVDERR LDX #$FFFF

00590 5944 DF FC STX XKQUOT

00600 5946 D6 FE DVDEND LDA B XKDSPL GET SHIFT COUNT INTO ACCB
00610 5948 CO 09 SUB B #9 XKDSPL = XKDSPL-9

00620 594A C1 04 CMP B #4 XKDSPL 4

00630 594C 25 02 BCS DVDLP3 YES: GO TO RETURN

00640 594E CO 04 SUB B #4 NO: XKDSPL=XKDSPL-4
00650 5950 D7 FE DVDLP3 STA B XKDSPL DISPLACEMENT OF REMAINDER
00660 * STORED IN XKDSPL

00670 5952 39 RTS

00680 END

Figure 5-12 XKDIVD Assembly Listing (Sheet 2 of 2)

NOTE

Section V is, by no means, comprehensive. It is intended to provide
some examples that can be used as is or that will suggest the direction for
modifying them for other specialized applications.

15

16

N

n

Sample

Programs

Vi

C 09200
/ 09380
09409
00500
22690
uo708
02800
29900
00
31100
01200
01300
91400
ﬂlSﬂﬁ
316920

28

L/

[SESESESTSESTSTSY

QLA CENVAT RS
o8 B B B B B o B ad L L) LI LD L I LI LI N
AL OC S I UTE I B SO 0~ UL LW S\
PRV

(SIS IS IS EST SIS TS ISTSISLS IS S

*k

NAM

PUNCH

* PUNCH MOTOROLA HEX FORMAT TAPES
* USE gONI’IOR S J COMMAND TO START EXECUTION

" AT

:*ENTER ADDRESS OF FIRST BYTE TO PUNCH
:*ENTER ADDRESS OF LAST BYTE TO PUNCH

* MONITOR ROUTINES
:*ADDRESSES ARE FOR ACIA VERSION OF MONITOR

OUTCH
ouT2d
BADDR
oUTS
CRLF
*%

*k

* DATA
*

FORM

BEGADR
LASADR
NUMBYT

PUN
PUN@

PUN1

PUN2
PUN3

E
@041 8D 29 PUN4
#243 7A 0008

DIA'e'ﬂllsll11$FF

EQU FF81
EQU gFF 6D
EQU FF62
U FF82
U FFAB
ORG @
RECORD FORMAT
FCB
RMB 2
RMB 2
RMB 1
BSR GETADR
STX BEGADR
BSR GETADR
STX LASADR
BSR
LDX #FORM~1
INX
LDA B X
BMI PUN1
JSR OUTCH
BRA PUN@
LDA A LASADR+1
SuUB A BEGADR+
LDA B LASADR
SBC B BEGADR
BNE PUN2
CcMp A #16
BCS PUN3
LDA A $15
STA A NUMBYT
ADD A $#4
JSR OUT2H
INX
BSR PNCH2
BSR PNCH2
LDX Bl R
BSR PNCH2
DEC NUMBYT

19

FIRST ADDR TO PUNCH
LAST ADDR TO PUNCH

GET FIRST ADDR
STORE

ER
POINT TO PUNCH FORMAT
HIGH ORDER BIT SET - DONE
PUNCH CHARACTER
SUB LOW ORDER BYTES
SUB HIGH ORDER BYTES
LOTS MORE TO PUNCH
LESS THAN 16 TO PUNCH?
NO, SO PUNCH 16
STORE #OF BYTES TO PUNCH-1
PUNCH BYTE COUNT
POINT TO BEGADR
PUNCH ADDRESS
POINT TO DATA

PUNCH DATA
MORE TO PUNCH THIS RECORD?

continued over

2668

0346 2A F9
20348 DF 07

%@48 BD FF6D
PB4F 9C @9
3 53
5 BD Fi3l
8 39
A BD FF81
D a3
F 7E FFAB

2865 BD FF8l
0269 26 FA
206C Eb6 290

2071 BD FF6D

2@77 BD FF82

3F
207C BD FF81
927F BD FF62

ERRORS 22309

STX BEGADR STORE NEW START ADDRESS
coM A FORM 1'S COMP OF CHECKSUM
JSR QUT2H PUNCH CHECKSUM
DEX AD]UST POIN[‘h.R
CpX LASADR ARE WE DON
BNE PUN NO, KEEP ON PUNCHING
LDA #'S YES, PUNCH EOF
JSR OUTCH
LDA B '9
JSR UTCH
BSR LEDTRL PUNCH TRAILER
- Jmp CRLF RETURN TO PROM MONITOR
:*SUBROUTINE TO PUNCH 52 NULLS
LEDTRL LDA A #59
CLR B
LED1 gg(R: A OUTCH PUNCH A NULL
BNE LED1 KEEP PUNCHING
" RTS RETURN TO CALLER
* PUNCH 2 HEX DIGITS POINTED
* ’IO X REG AND UPDATE CHECKSUM
PNCHZ LDA B X GET BYTE TO PUNCH
ABA UPDATE CHECKSUM
PSH A SAVE CHECKSUM
TBA COPY BYTE TO A
JSR OUT2H PUNCH BYTE
PUL A RESTORE CHECKSUM
INX BUMP BYTE POINTER
" RTS RETURN TO CALLER
:*READ ADDRESS FORM TTY INTO X REG
GETADR JSR OUI‘S SEND SPACE
LDA B $'? SEND QUESTION MARK
JSR OUTCH
JSR BADDR GET ADDRESS
S RETURN

RT
END

LV Lo L

VORIV WN SIS IV b (W

(8]
SNSRI
o
(=2}

R

Ty e e varwer}
mOL oW e

VRSSO
N
{&7]
@]
m

WL W RN
NS mO) >
jw) Q

1] L)}

—

3C 96 15
BD

D9
9 7E FFAB

2853 BD F£‘82

3
9958 BD FF81
8058 BD FF62

ERRORS 00000

. NAM

MEMTEST

:*ALTAIR 6808 MEMORY TEST PROGRAM

* USE MONITOR'S J
:*AT 2819

COMMAND TO START EXECUTION

:*ENTER ADDRESS OF FIRST LOCATION TO TEST
:*ENTER ADDRESS OF LAST ADDRESS TO TEST

* MONITOR ROUTINES

:*ADDRESSES ARE FOR ACIA VERSION OF MONITOR

OUTCH

OUT2H EQU
BADDR EQU
OouTS EQU
l;‘IS‘)NIT EQU

STACK
XHIGH RMB
XLOW

%S‘I‘BYT RMB
GO LDS

NXTBYT CLR B
NXTPAT STA B

Bl
OKMEM INC B

BNE
BUMP INX

*
*

§177601

X REG LOW ORDER
LAST BYTE TO CHECK

#STACK INIT STACK POINTER
GETADR GET FIRST ADDR
STORE IT

$
1
% X REG HIGH ORDER
2

LSTBYT STORE IT
XHIGH POINT TO FIRST BYTE

X WRITE TEST PATTERN

X CHECK WRITTEN PATTERN
OKMEM DID WE READ WHAT WE WROTE?
#3$1101 NO,SEND CR AND LF

OUTCH)

$@12 v

OUTCH

XHIGH STORE X REGISTER

XHIGH

OUT2H PRINT HIGH BYTE OF ADDRESS
PRINT LOW BYTE OF ADDRESS

DONE WITH THIS BYTE

INCRE
NXTPAT ALL PATTERNS TESTED?
YES, BUMP BYTE POINTER
LSTBYT

NXTBYT ALL BYTES TESTED?
MONIT YES, RETURN TO PROM MONITOR

: SUBROUTINE TO GET ADDRESS INTO X REG

GETADR JSR
LDA B
JSR

JSR
RIS
END

OuTS PRINT A SPACE
$'? PRINT A QUESTION MARK
OUTCH

BADDR GET ADDRESS
RETURN TO CALLING PROGRAM

81

WL
hWA209
U349
BA42)

20F3
20F3 FF

BD FF82
A6 29
BD FF6D

a2
27 @8
BD F5‘24

E
B6 FOJ1
7E FFAB

SRRV DD
[SIS IS S RS TR I SIS TS TSN
W3 L L0 LS LI LI LIRS DO
B=mO PO NTO >
0
@)

2047 BD FF82

3F
204C BD Frgl
204F gD FF62

BaF3
29F3 39

ERRORS 20029

NAM DMp
:*_AL'I‘AIR 6803 HEXADECIMAL MEMORY DUMP PROGRAM
:*L.OI\D VIA PROM MONITOR

* USE MONITOR'S J COMMAND TO
:*S‘I‘ART EXECUTION AT 0005

:*ENTER ADDRESS OF FIRST BYTE TO DUMP
:*ENTER ADDRESS OF LAST BYTE TO DUMP
:*TYPE ANY CHARACTER TO ABORT WHILE RUNNING
:*CONTROL RETURNS TO THE PROM MONITOR

ORG §F3
FCB FF TURN OFF TTY ECHO DURING LOAD

* MONITOR ROUTINES
: ADDRESSES ARE FOR ACIA VERSION OF MONITOR

OUTCH EQU @177601
QUT2d EQU @177555
BADDR EQU 4177542
EQU 177692
MONIT EQU 4177653
POLCAT EQU @177431
ORG g
XHI ~ RMB 1 TEMP FOR HIGH BYTE OF X
RMB 1 TEMP FOR LOW BYTE OF X
LSTBYT RMB 2 ADDRESS OF LAST BYTE TO DUMP
OUNT RMB 1 COLUMN COUNTER
BSR GETADR GET FIRST ADDR
STX Xal STORE IT
BSR GETADR GET LAST ADDR
INX ADJUST IT
5TX LSTBYT STORE IT
LDX XHI POINT TO FIRST BYTE
CRLF LDA B §d1s SEND CRLF
JSR OUTCH
LDA B $912
JSR ou
LDA B $17
STA B COUNT INIT COUNTER
STX XHI PRINT ADDRESS
LDA A XHI
JSR ouT2d
LDA A XLO
JSR ouT2d
NXTBYT DEC COUNT
BEQ CRLF
JSR OUTS SEND A SPACE
LDA A X BYTE TO A
JSR OUT2H PRINT IT
INX BUMP_POINTER
CPX LSTBYT WE_DONE?
BEQ JMONIT YES, RETURN TO MONITOR
JSR POLCAT NO, WANT TO QUIT?
BCC NXTBYT
LDA A F#31 YES, READ CHAR FROM BUFFER
JMONIT JMP IT AND'RETURN TO MONITOR
GETADR LOADS X WITH ADDRESS
* READ FROM
GETADR JSR ouTS SEND SPACE
LDA B §'? SEND QUESTION MARK
JSR QUTCH
JSR BADDR GET ADDDRESS
. RTS RETURN
* RESTORE TTY ECHO AFTER LOAD
ORG F3
FCB 2
END

09

appendix
A

Instruction Set

C

APPENDIX A

Definition of the Executable Instructions

A.1 Nomenclature

The following nomenclature is used in the subsequent definitions.

(a)

(®)

(©)

(@

Operators

() = contents of

“« = s transferred to

I = ‘‘is pulled from stack’’
! = ‘‘is pushed into stack”’
. = Boolean AND

©) = Boolean (Inclusive) OR
® = Exclusive OR

=~ = Boolean NOT
Registers in the MPU

ACCA = Accumulator A

ACCB = Accumulator B

ACCX = Accumulator ACCA or ACCB
CC = Condition codes register

IX

I

Index register, 16 bits

IXH = Index register, higher order 8 bits
IXL = Index register, lower order 8 bits
PC = Program counter, 16 bits

PCH = Program counter, higher order 8 bits
PCL = Program counter, lower order 8 bits
Sp = Stack pointer

SPH = Stack pointer high

SPL = Stack pointer low

Memory and Addressing

M = A memory location (one byte)

M +1 = Thebyte of memory at 0001 plus the address of the memory

location indicated by “M.”’

Rel = Relative address (i.e. the two’s complement number stored
in the second byte of machine code corresponding to a
branch instruction.

Bits O thru 5 of the Condition Codes Register

C = Carry — borrow bit — 0

V = Two’s complement overflow indicator bit — 1

Z = Zero indicator bit — 2

N = Negative indicator bit — 3

1 = Interrupt mask bit — 4

H = Half carry bit — 5
A-1

(é) Status

An
Bn
IXHn
IXLn
Mn
SPHn
SPLn
Xn

=

of Individual Bits BEFORE Execution of an Instruction

Bit n of ACCA (n=17,6,5,...,0)
Bit n of ACCB (n=7,6,5,...,0)
Bit n of IXH (n=7,6,5,...,0)
Bit n of IXL (n=7,6,5,...,0)
Bit n of M (n=7,6,5,...,0)

Bit n of SPH (n=17,6,5,...,0)
Bit n of SPL (n=7,6,5,...,0)
Bit n of ACCX (n=17,6,5,...,0)

() Status of Individual Bits of the RESULT of Execution of an Instruction
(i) For 8-bit Results

Rn

= Bit n of the result (n =7,6,5,...,0)

This applies to instructions which provide a result con-
tained in a single byte of memory or in an 8-bit register.

(i1) For 16-bit Results
RHn = Bit n of the more significant byte of the result

(n =7,6,5,...,0)

RLn = Bit n of the less significant byte of the result

(n =7,6,5,...,0)

This applies to instructions which provide a result con-
tained in two consecutive bytes of memory or in a 16-bit
register.

A .2 Executable Instructions (definition of)

Detailed definitions of the 72 executable instructions of the source language are

provided on the following pages.

A-2

C

Add Accumulator B to Accumulator A ABA
Operation: ACCA « (ACCA) + (ACCB)

Description: Adds the contents of ACCB to the contents of ACCA and
places the result in ACCA.

Condition Codes: H: Set if there was a carry from bit 3; cleared otherwise.

I. Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Set if there was a carry from the most significant bit of
the result; cleared otherwise.

Boolean Formulae for Condition Codes:
H = A3.B3+B3.R3.+R3.A3
N =Ry o
Z = §7.1—16.§5.§1.—ﬁ1.R2.R1.R0
V = A7.B7.R7+A7B1.R7

C = A7.B7+B7.R7+R7.A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal:

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
Inherent 2 1 1B 033 027
A-3

ADC Add with Carry

Operation: ACCX « (ACCX) + (M) + (O

Description: Adds the contents of the C bit to the sum of the contents of
ACCX and M, and places the result in ACCX.

Condition Codes: H Set if there was a carry from bit 3; cleared otherwise.

I. Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Set if there was a carry from the most significant bit of
the result; cleared otherwise.

Boolean Formulae for Condition Codes:
H = X3.M3+M3.Rs+R3.X3

Z = R7.Re.R5.R4.R3.R2.R1.R0
V= X7.M7.R7+)£7.M_1.R7
C = X7.M7+Mz.R7+R7. X7

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

A IMM 2 2 89 211 137
A DIR 3 2 99 231 153
A EXT 4 3 B9 271 185
A IND 5 2 A9 251 169
B IMM 2 2 c9 311 201
B DIR 3 2 D9 331 217
B EXT 4 3 F9 371 249
B IND 5 2 E9 351 233

A4

Add Without Carry ADD
Operation: ACCX « (ACCX) + (M)

Description: . Adds the contents of ACCX and the contents of M and places
: the results in ACCX.

Condition Codes: H: Set if there was a carry from bit 3; cleared otherwise.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Set if there was a carry from the most significant bit of
the result; cleared otherwise.

Boolean Formulae for Condition Codes_:_ _
H = X3.M3+M;3.Rs+R3.X3

V= X7.M7.§7+7(_7.N[_1.R7
C = X7.M7+M7.R7+R7.X7

Addressing Formats:
See Table A-1

Addressing Modex, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 8B 213 139
A DIR 3 2 9B 233 155
A EXT 4 3 BB 273 187
A IND 5 2 AB 253 171
B IMM 2 2 CB 313 203
B DIR 3 2 DB 333 219
B EXT 4 3 FB 373 251
B IND 5 2 EB 353 235
A-§

AND

Operation:

Description:

Condition Codes: H:

ACCX « (ACCX) . (M)
Performs logical **AND’" between the contents of ACCX

and the contents of M and places the result in ACCX. (Each

Logical AND

bit of ACCX after the operation will be the logical ‘‘AND”’

of the corresponding bits of M and of ACCX before the

operation.)

I:

N:

Z:
V:
C: Not affected.

Not affected.
Not affected.

Set if most significant bit of the result is set; cleared

otherwise.

Set if all bits of the result are cleared; cleared otherwise.

Cleared.

Boolean Formulae for Condition Codes:

N =Rz _

Z =R+Re.Rs.Re.Rs.R2.Ri.Ro
V=0

Addressing Formats:

See Table A-1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

A IMM 2 2 84 204 132

A DIR 3 2 94 224 148

A EXT 4 3 B4 264 180

A IND 5 2 Ad 244 164

B IMM 2 2 C4 304 196

B DIR 3 2 D4 324 212

B EXT 4 3 F4 364 244

B IND 5 2 E4 344 228

Arithmetic Shift Left ASL

Operation: -
[T TTTTTT] o
b7 bo
Description: Shifts all bits of the ACCX or M one place to the left. Bit O is

loaded with a zero. The C bit is loaded from the most
significant bit of ACCX or M.

Condition Codes: H: Not affected.

1. Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Set if, after the completion of the shift operation,
EITHER (N is set and C is cleared) OR (N is cleared and
C is set); cleared otherwise.

C: Setif, before the operation, the most significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Z = R7.R6.R5.R4.R3.R2.R1.Re
V=N@® C=[NCIOIN.C]
(the foregoing formula assumes values of N and C after
the shift operation)
C =M:q
Addressing Formats
See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 48 110 072
B 2 1 58 130 088
EXT 6 3 78 170 120
IND 7 2 68 150 104

A7

ASR Arithmetic Shift Right

Operation: | T
LI T rr 1t rilJ—c

bz bo

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is
held constant. Bit 0 is loaded into the C bit.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Set if, after the completion of the shift operation,
EITHER (N is set and C is cleared) OR (N is cleared and
C is set); cleared otherwise.

C: Setif, before the operation, the least significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:

Z = R7.R6.R5.R4.R3.R2.R1.Ro
V=N@C = [N.C.]JO[N.C]

(the foregoing formula assumes values of N and C after
the shift operation)
C =Mo
Addressing Formats:
See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 47 107 071

B 2 1 57 127 087
EXT 6 3 77 167 119
IND 7 2 67 147 103

A-8

Branch if Carry Clear BCC
Operation; PC « (PC) + 0002 + Rel it (C)=0
Description: Tests the state of the C bit and causes a branch if C is clear.

See BRA instruction for further details of the execution of the
branch.

Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexedecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

REL 4 2 24 044 036
Branch if Carry Set BCS
Operation: PC « (PC) + 0002 + Rel if (C)=1
Description: Tests the state of the C bit and causes a branch if C is set.

See BRA instruction for further details of the execution of the
branch.

Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 25 045 037
A9

BEQ

Operation:
Description:

Branch if Equal
PC « (PC) + 0002 + Rel if (Z)=1
Tests the state of the Z bit and causes a branch if the Z bit is
set.

See BRA instruction for further details of the execution of the
branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 27 047 039

A-10

o

Branch if Greater than or Equal to Zero BGE

Operation:

Description:

PC « (PC) 4 0002 + Rel if (N) D (V) =0
i.c. if (ACCX) = (M)

(Two’s complement numbers)
Causes a branch if (N is setand V is set) OR (N is clear and V
is clear).
If the BGE instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two’s complement
number represented by the minuend (i.e. ACCX) was greater
than or equal to the two’s complement number represented by
the subtrahend (i.e. M).

See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2C 054 044
A-11

BGT

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

Branch if Greater than Zero
PC « (PC) + 0002 + Rel if @O [N D W] =0
i.e. if (ACCX) > (M)
(two’s complement numbers)
Causes a branch if [Z is clear] AND [(N is set and V is set)
OR (N is clear and V is clear)].

If the BGT instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two’s complement number
represented by the minuend (i.e. ACCX) was greater than the
two’s complement number represented by the subtrahend
(i.e. M).

See BRA instruction for details of the branch.

Not affected.

Execution Time, and Machine Code (hexadecimal/octal/

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 2E 056 046

A-12

-

Branch if Higher

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

BHI

PC « (PC) + 0002 + Rel if (C) . (Z)=0
i.e. if (ACCX) > (M)
(unsigned binary numbers)
Causes a branch if (C is clear) AND (Z is clear).

If the BHI instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the unsigned binary number
represented by the minuend (i.e. ACCX) was greater than the
unsigned binary number represented by the subtrahend (i.e.
M).

See BRA instruction for details of the execution of the
branch.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) { machine code | HEX. | OCT. | DEC.
REL 4 2 22 042 034
A-13

BIT Bit Test

Operation: (ACCX) . (M)

Description: Performs the logical **AND’" comparison of the contents of
ACCX and the contents of M and modifies conditior codes
accordingly. Neither the contents of ACCX or M operands
are affected. (Each bit of the result of the *“AND’’ would be
the logical ‘““AND”’ of the corresponding bits of M and
ACCX.)

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the ‘‘AND”’
would be set; cleared otherwise.

Z: Set if all bits of the result of the ‘“AND’’ would be
cleared; cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

N=R __ _ _ _ _ _
Z = R7.R6.Rs5.R4.R3.R2.R1.R0
V=0

Addressing Formats:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. OCT. | DEC.
A IMM 2 2 85 205 133
A DIR 3 2 95 225 149
A EXT 4 3 BS 265 181
A IND 5 2 AS 245 165
B IMM 2 2 C5 305 197
B DIR 3 2 D5 325 213
B EXT 4 3 F5 365 245
B IND 5 2 ES 345 229

. Branch if Less than or Equal to Zero BLE
(\J Operation: PC « (PC) + 0002 + Rel it () (N @D (V)]=1
i.e. if (ACCX) = (M)
(two’s complement numbers)

Description: Causes a branch if [Z is set] OR [(N is set and V is clear) OR
(N is clear and V is set)].

If the BLE instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two’s complement number
represented by the minuend (i.e. ACCX) was less then or
equal to the two’s complement number represented by the
subtrahend (i.e. M).

See BRA instruction for details of the branch.
Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
(/ Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2F 057 Q47

(\/ A-15

BLS

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Branch if Lower or Same
PC « (PC) + 0002 + Rel if (C)()(Z) = |
i.e. if (ACCX) < (M)

(unsigned binary numbers)
Causes a branch if (C is set) OR (Z is set).
If the BLS instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the unsigned binary number
represented by the minuend (i.e. ACCX) was less than or
equal to the unsigned binary number represented by the
subtrahend (i.e. M).
See BRA instruction for details of the execution of the
branch.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. { OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 23 043 035

A-16

Branch if Less than Zero BLT
W Operation: PC < (PC) + 0002 + Rel if (N) @D (V) = 1

i.e. if (ACCX) < (M)
(two’s complement numbers)

Description: Causes abranch if (N is set and V is clear) OR (N is clear and
V is set).
If the BLT instruction is executed immediately after execu-
tion of any of the instructions CBA, CMP, SBA, or SUB, the
branch will occur if and only if the two’s complement number
represented by the minuend (i.e. ACCX) was less than the
two’s complement number represented by the subtrahend
(i.e. M).
See BRA instruction for details of the branch.

Condition Codes: Not affected.

Addressing Formats:

See Table A-8.
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
Coding of First (or only)
Number of byte of machine code
: Addressing | Execution Time bytes of
C/ Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2D 055 045

(\J A-17

BMI Branch if Minus
Operition: PCe (PC) 1+ 0002 + Rel if (N) 1
Description: ‘Tests the state of the N bit and causes a branch if N is set.

See BRA instruction for details of the execution of the
branch.

Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 2B 053 043
B N E Branch if Not Equal
Operation: PC « (PC) + 0002 + Rel if (Z) = 0
Description: Tests the state of the Z bit and causes a branch if the Z bit is
clear.

See BRA instruction for details of the execution of the
Branch.

Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 26 046 038

Branch if Plus
Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

PC <« (PC) + 0002 + Rel if (N) =0
Tests the state of the N bit and causes a branch if N is clear.

See BRA instruction for details of the execution of the
branch.

Not affected.

Execution Time, and Machine Code (hexadecimal/octal/

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

REL

4 2 2A 052 042

Branch Always
Operation:
Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Addressing Modes,
decimal):

BRA
PC < (PC) + 0002 + Rel

Unconditional branch to the address given by the foregoing
formula, in which R is the relative offset stored as a two’s
complement number in the second byte of machine code
corresponding to the branch instruction.

Note: The source program specifies the destination of any
branch instruction by its absolute address, either as a numeri-
cal value or as a symbol or expression which can be numeri-
cally evaluated by the assembler. The assembler obtains the
relative address R from the absolute address and the current
value of the program counter PC.

Not affected.

Execution Time, and Machine Code (hexadecimal/octal/

Coding of First (or only)

Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 20 040 032
A-19

BSR

Operation:

Description:

Condition Codes:
Addressing Formats:
See Table A-8.

Branch to Subroutine
PC «— (PC) + 0002
L (pCL)
SP « (SP) — 0001
| (PCH)
SP « (SP) — 0001
PC « (PC) + Rel

The program counter is incremented by 2. The less signifi-
cant byte of the contents of the program counter is pushed
into the stack. The stack pointer is then decremented (by 1).
The more significant byte of the contents of the program
counter is then pushed into the stack. The stack pointer is
again decremented (by 1). A branch then occurs to the
location specified by the program.

SEE BRA instruction for details of the execution of the
branch.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.

Coding of First (or only)
Number of byte of machine code

REL

8 2 8D 215 141

A-20

Branch to Subroutine

EXAMPLE
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A. Before
PC < $1000 8D BSR CHARLI
$1001 50
SP < S$EFFF
B. After
PC < $1052 ok CHARLI ook Hekokkok
SP < S$EFFD
$EFFE 10
$EFFF 02
Branch if Overflow Clear BVC
Operation: PC « (PC) + 0002 + Rel if (V) = 0
Description: Tests the state of the V bit and causes a branch if the V bit is
clear.

See BRA instruction for details of the execution of the
branch.

Condition Codes: Not affected.
Addressing Formats:
See Table A-8.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.
REL 4 2 28 050 040
A-21

BVS Branch if Overflow S;et

Operation: PC « (PC) + 0002 + Rel if (V) =1
Description: Tests the state of the V bit and causes a branch if the V bit is
set.

See BRA instruction for details of the execution of the
branch.

Condition Codes: Not affected.

Addressing Formats:

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
REL 4 2 29 051 041

A-22

Compare Accumulators CBA

Operation: (ACCA) — (ACCB)

Description: Compares the contents of ACCA and the contents of ACCB
and sets the condition codes, which may be used for arith-

metic and logical conditional branches. Both operands are
unaffected.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion would be set; cleared otherwise.

Z: Set if all bits of the result of the subtraction would be
cleared; cleared otherwise.

V: Set if the subtraction would cause two’s complement
overflow; cleared otherwise.

C: Set if the subtraction would require a borrow into the
most significant bit of the result; clear otherwise.

Boolean Formulae for Condition Codes:

Z = R7.R6.Rs.R4.R3.R2.R1.Ro
V= A7.B7.R1+A7.B1.Rl
C = A7.B7+B7.R:+R7. A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 11 021 017
A-23

CLC Clear Carry

Operation: Chit« ()
Description: Clears the carry bit in the processor condition codes register.

Condition Codes: Not affected.
Not affected.
Not affected.
Not affected.
: Not affected.
Cleared

Boolean Formulae for Condition Codes:
C=0

Q<Nz~x

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

INHERENT 2 1 oC 014 012
CL' Clear Interrupt Mask
Operation: I bit < 0
Description: Clears the interrupt mask bit in the processor condition codes

register. This enables the microprocessor to service an inter-
rupt from a peripheral device if signalled by a high state of the
‘‘Interrupt Request™” control input.

Not affected.
Cleared.

Not affected.
Not affected.
: Not affected.
Not affected.

Boolean Formulae for Condition Codes:
1 =0

Condition Codes:

<Nz~ x

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 OE 016 014

A-24

Clear

Operation:
or:

Description:

Condition Codes:

ACCX « 00

M« 00

CLR

The contents of ACCX or M are replaced with zeros.

: Cleared
Set

: Cleared
Cleared

o<NzZTT

: Not affected.
Not affected.

Boolean Formulae for Condition Codes:

N=0
Z =1
0
0

[l

v
C

Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. { OCT.| DEC.

A 2 1 4F 117 079
B 2 1 SF 137 095
EXT 6 3 7F 177 127
IND 7 2 6F 157 1

A-25

CLv

Operation:

Description:

Condition Codes:

V bit « 0

Clear Two’s Complement Overflow Bit

Clears the two’s complement overflow bit in the processor
condition codes register.

. Not affected.

Not affected.

. Not affected.

. Cleared.
Not affected.

]

H

I.

N: Not affected.
Z:

\Y

Boolean Formulae for Condition Codes:

V=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 0A 012 010

Compare CMP

Operation: (ACCX) — (M)

Description: Compares the contents of ACCX and the contents of M and
determines the condition codes, which may be used sub-

sequently for controlling conditional branching. Both
operands are unaffected.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion would be set; cleared otherwise.

Z: Set if all bits of the result of the subtraction would be
cleared; cleared otherwise.

V: Set if the subtraction would cause two’s complement
overflow; cleared otherwise.

C: Carry is set if the absolute value of the contents of
memory is larger than the absolute value of the ac-
cumulator; reset otherwise.

Boolean Formulae for Condition Codes:

Z = Rv.lﬁ.R_s.R‘z_‘Ra.Rz.Rl.Ro

V= E7.M7.R7+X7.M1.§7

C = X7.M7+M7.R7.R7. X7
Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
A IMM 2 2 81 201 129
A IDR 3 2 91 221 145
A EXT 4 3 B1 261 177
A IND 5 2 Al 241 161
B IMM 2 2 C1 301 193
B DIR 3 2 Dl 321 209
B EXT 4 3 F1 361 241
B IND 5 2 El 341 225
A-27

CO M Complement

Operation: ACCX « = (ACCX) = FF — (ACCX)
or: M« = (M) =FF — (M)
Description: Replaces the contents of ACCX or M with its one’s comple-

ment. (Each bit of the contents of ACCX or M is replaced
with the complement of that bit.)

H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Cleared.

C: Set.

Boolean Formulae for Condition Codes:

Condition Codes:

Z = R7.R6.R5.R4.R3.R2.R1.Ro
V =
C
Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT.| DEC.
A 2 1 43 103 067
B 2 1 53 123 083
EXT 6 3 73 163 115
IND 7 2 63 143 099

Compare Index Register CPX

(/' Operation: Xty Mih

(IXH) - M)

Description: The more significant byte of the contents of the index register
is compared with the contents of the byte of memory at the
address specified by the program. The less significant byte of
the contents of the index register is compared with the con-
tents of the next byte of memory, at one plus the address
specified by the program. The Z bit is set or reset according to
the results of these comparisons, and may be used sub-
sequently for conditional branching.

The N and V bits, though determined by this operation, are
not intended for conditional branching.

The C bit is not affected by this operation.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the result of the subtrac-
tion from the more significant byte of the index register
would be set; cleared otherwise.

Z: Setif all bits of the results of both subtractions would be
cleared; cleared otherwise.

V: Set if the subtraction from the more significant byte of

(the index register would cause two’s complement over-
L‘/ flow; cleared otherwise.
C: Not affected.

Boolean Formulae for Condition Codes:

(RL7.RLs.RLs.RLs.RL3.RL2.RL1.RLo)
V = IXH7.M7.RH7+I1XH7.M7.RH~

Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

IMM 3 3 8C 214 140

DIR 4 2 9C 234 156

EXT 5 3 BC 274 188

IND 6 2 AC 254 172

DAA

Decimal Adjust ACCA

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also
set the carry bit, as indicated in the following table:

State Number | State of
C-bit Upper Initial Lower Added C-bit
before | Half-byte Half-carry Half-byte to ACCA after
DAA | (bits 4-7) H-bit (bits 0-3) by DAA DAA
(Col. 1) | (Col. 2) (Col. 3) (Col. 9) (Col. 5) | (Col. 6)
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

Note: Columns (1) to (4) of the above table represent all possible cases which can
result from any of the operations ABA, ADD, or ADC, with initial carry
either set or clear, applied to two binary-coded-decimal operands. The table
shows hexadecimal values.

Description: If the contents of ACCA and the state of the carry-borrow bit C and the
half-carry bit H are all the result of applying any of the operations
ABA, ADD, or ADC to binary-coded-decimal operands, with or
without an initial carry, the DAA operation will function as follows.

Subject to the above condition, the DAA operation will adjust the

contents
coded-de

Condition Codes: H:

I
N:

Q<N

of ACCA and the C bit to represent the correct binary-
cimal sum and the correct state of the carry.

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared other-
wise.

: Set if all bits of the result are cleared; cleared otherwise.
: Not defined.

Set or reset according to the same rule as if the DAA and an
immediately preceding ABA, ADD, or ADC were replaced
by a hypothetical binary-coded-decimal addition.

A-30

L

Boolean Formulae for Condition Codes:

7. R2.Ra.Rs.Ri.R3.Rz2.Ri.Ro
(' Sce table above.

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT.| DEC.
INHERENT 2 1 19 031 025

Decrement DEC

Operation: ACCX « (ACCX) — 01
or: M (M) - 01
Description: Subtract one from the contents of ACCX or M.

The N, Z, and V condition codes are set or reset according to
the results of this operation.

The C bit is not affected by the operation.

Condition Codes: ~ H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Set if there was two’s complement overflow as a result of
the operation; cleared otherwise. Two’s complement
overflow occurs if and only if (ACCX) or (M) was 80
before the operation.

C: Not affected.

Boolean Formulae for Condition Codes:

Addressing Formats:

See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of :
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 4A 112 074
B 2 1 5A 132 090
EXT 6 3 7A 172 122
IND 7 2 6A 152 106
A-31

DES Decrement Stack Point
Operation: SP « (SP) — 0001
Description: Subtract one from the stack pointer.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 1 34 064 052
D EX Decrement Index Register
Operation: IX « (IX) — 0001
Description: Subtract one from the index register

Only the Z bit is set or reset according to the result of this
operation.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Not affected.

Not affected.

Boolean Formulae for Condition Codes:

Z = (RH7.RHe.RHs.RH4.RHs.RHz2.RH:1.RHo).
(RL7.RLs.RL5.RLs.RL3.RL2.RL1.RLo)

o

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 1 09 011 009

A-32

Exclusive OR EOR

Operation: ACCX « (ACCX) D (M)

Description: Pertform logical **EXCLUSIVE OR*’ between the contents
of ACCX and the contents of M, and place the result in
ACCX. (Each bit of ACCX after the operation will be the
logical (EXCLUSIVE OR”’ of the corresponding bits of M
and ACCX before the operation.)

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Cleared
C: Not affected.

Boolean Formulae for Condition Codes:

N=R __ _ _ _
Z = R7.Ré.R5.R4.R3.R2.R1.R0
V=0

Addressing Formats:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
A IMM 2 2 88 210 136
A DIR 3 2 98 230 152
A EXT 4 3 B8 270 184
A IND 5 2 A8 250 168
B IMM 2 2 C8 310 200
B DIR 3 2 D8 330 216
B EXT 4 3 F8 370 248
B IND 5 2 E8 350 232

A-33

l N C Increment

Operation: ACCX « (ACCX) + 01
or: Me M) + 01
Description: Add one to the contents of ACCX or M.

TheN, Z, and V condition codes are set or reset according to
the results of this operation.

The C bit is not affected by the operation.

Condition Codes: H: Not affected.
I. Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Z: Set if all bits of the result are cleared; cleared otherwise.
V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise. Two’s complement
overflow will occur if and only if (ACCX) or (M) was 7F
before the operation.
C: Not affected.
Boolean Formulae for Condition Codes:
N =R

= R7.R6.R5.R4.R3.R2.R1.Ro
Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
A 2 1 4C 114 076
B 2 1 5C 134 092
EXT 6 3 7C 174 124
IND 7 2 6C 154 108

A-34

Increment Stack Pointer
SP « (SP) + 0001
Add one to the stack pointer.

Operation:
Description:

Condition Codes:

Not affected.

INS

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
INHERENT 4 1 31 061 049

Increment Index Register
IX « (IX) + 0001
Add one to the index register.

Operation:
Description:

Condition Codes: H:

INX

Only the Z bit is set or reset according to the result of this

operation.

Not affected.

1. Not affected.
N: Not affected.
Z: Setif all 16 bits of the result are cleared; cleared other-

wise.

V: Not affected.
C: Not affected.

Boolean Formulae for Condition Codes: -

Z = (RHz.RHe.RHs5. RH4.RH3.RH:.RH1.RHo).
(RL7.RLs.RLs.RL4.RL3.RL2.RL1.RL0o)

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 4 1 08 010 008

A-35

JMP Jump

Operation: PC <« numerical address

Description: A jump occurs to the instruction stored at the numerical
address. The numerical address is obtained according to the
rules for EXTended or INDexed addressing.

Condition Codes: Not affected.
Addressing Formats:
See Table A-7.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
EXT 3 3 7E 176 126
IND 4 2 6E 156 110

A-36

Jump to Subroutine

Operation:
Either:

or:

Then:

Condition Codes:
Description:

Addressing Formats:
See Table A-7.

Addressing Modes,
decimal):

JSR

PC « (PC) + 0003 (for EXTended addressing)
PC « (PC) + 0002 (for INDexed addressing)
I (PCL)

SP « (SP) — 0001

| (PCH)

SP « (SP) — 0001

PC <« numerical address

Not affected.

The program counter is incremented by 3 or by 2, depending
on the addressing mode, and is then pushed onto the stack,
eight bits at a time. The stack pointer points to the next empty
location in the stack. A jump occurs to the instruction stored
at the numerical address. The numerical address is obtained
according to the rules for EXTended or INDexed addressing.

Execution Time, and Machine Code (hexadecimal/octal/

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
EXT 9 3 BD 275 189
IND 8 2 AD 255 173

A-37

Jump to Subroutine

EXAMPLE (extended mode)

Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand

A. Before:
PC — $0FFF BD JSR CHARLI
$1000 20
$1001 77

SP <« S$EFFF

B. After:
PC — $2077 ** CHARLI *kk Fokokokok
SP — S$EFFD
$EFFE 10
$EFFF 02

(‘/

Load Accumulator

Operation:
Description:

Condition Codes:

LDA

ACCX « (M)

Loads the contents of memory into the accumulator. The
condition codes are set according to the data.

H
I
N

Q<N

: Not affected.

Not affected.

¢ Set if most significant bit of the result is set; cleared

otherwise.
Set if all bits of the result are cleared; cleared otherwise.

: Cleared.

Not affected.

Boolean Formulae for Condition Codes:

N =R?

Z = §7.§e.§5.§4.§3i2.ﬁ1.§0
V=0

Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
DUAL OPERAND)
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. OCT. | DEC.
A IMM 2 2 86 206 134
A DIR 3 2 96 226 150
A EXT 4 3 B6 266 182
A IND S 2 A6 246 166
B IMM 2 2 Cé6 306 198
B DIR 3 2 D6 326 214
B EXT 4 3 Fé6 366 246
B IND 5 2 E6 346 230

A-39

LDS Load Stack Pointer

Operation: SPH « (M)
SPL « (M+1)
Description: Loads the more significant byte of the stack pointer from byte

of memory at the address specified by the program, and loads
the less significant byte of the stack pointer from the next
byte of memory, at one plus the address specified by the
program.
Condition Codes: H: Not affected.
I: Not affected.
N: Set if the most significant bit of the stack pointer is set by
the operation; cleared otherwise.
Z: Set if all bits of the stack pointer are cleared by the
operation; cleared otherwise.
V: Cleared.
C: Not affected.
Boolean Formulae for Condition Codes:

V=0
Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
IMM 3 3 8E 216 142
DIR 4 2 9E 236 158
EXT 5 3 BE 276 190
IND 6 2 AE 256 174

A-40

Load Index Register LDX
Operation: IXH « (M)

IXL < (M+1)
Description: Loads the more significant byte of the index register from

byte of memory at the address specified by the program, and

loads the less significant byte of the index register from the

next byte of memory, at one plus the address specified by the

program.

Condition Codes: ~ N: Not affected.

I: Not affected.

N: Set if the most significant bit of the index register is set
by the operation; cleared otherwise.

Z: Set if all bits of the index register are cleared by the
operation; cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:
N = RH»

(RL7.RLs.RLs.RLs.RL3.RL2.RL1.RLo)
V=0
Addressing Formats:
See Table A-5.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.

IMM 3 3 CE 316 206
DIR 4 2 DE 336 222
EXT 5 3 FE 376 254
IND 6 2 EE 356 238

A-41

LSR Loglcal Shift Right

Operation: o— [[TTTT1 [J"ll

bz bo

Description: Shifts all bits of ACCX or M one place to the right. Bit 7 is
loaded with a zero. The C bit is loaded from the least
significant bit of ACCX or M.

Not affected.

Not affected.

Cleared.

Set if all bits of the result are cleared; cleared otherwise.
Set if, after the completion of the shift operation,
EITHER (N is set and Cis cleared) OR (N is cleared and
C is set); cleared otherwise.

C: Setif, before the operation, the least significant bit of the
ACCX or M was set; cleared otherwise.

Condition Codes:

<Nz=@

Boolean Formulae for Condition Codes:

Z = R7.Re6.Rs5.R4.R3.Rz2.R1.Ro

v=N@® cC = [N.CIQIN.C]
(the foregoing formula assumes values of N and C after
the shift operation).

C =Mo

Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 44 104 068
B 2 1 54 124 084
EXT 6 3 74 164 116
IND 7 2 64 144 100

A-42

Negate N EG

Operation: ACCX « — (ACCX) = 00 — (ACCX)
or: Me - (M) =00- (M)
Description: Replaces the contents of ACCX or M with its two’s comple-

ment. Note that 80 is left unchanged.

H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Set if there would be two’s complement overflow as a
result of the implied subtraction from zero; this will
occur if and only if the contents of ACCX or M is 80.

C: Setif there would be a borrow in the implied subtraction
from zero; the C bit will be set in all cases except when
the contents of ACCX or M is 00.

Boolean Formulae for Condition Codes:

Condition Codes:

V = R7.R6.R5.R4.R3.R2.R1.Ro
C = R7+Ré6+Rs5+Rs+Ra+Rz+Ri1+Ro

Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 40 100 064

B 2 1 50 120 080
EXT 6 3 70 160 112
IND 7 2 60 140 096

A-43

NO P No Operation

Description: This is a single-word instruction which causes only the prog-
ram counter to be incremented. No other registers are af-
fected.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

INHERENT 2 1 01 001 001

A-44

Inclusive OR ‘ ORA
Operation: ACCX « (ACCX)O(M)

Description: Perform logical *‘OR”’ between the contents of ACCX and
the contents of M and places the result in ACCX. (Each bit of
ACCX after the operation will be the logical ‘““OR”’ of the
corresponding bits of M and of ACCX before the operation).

Condition Codes: H: Not affected.
I. Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Z: Setif all bits of the result are cleared; cleared otherwise.
V: Cleared.
C: Not affected.

Boolean Formulae for Condition Codes:

N=Rs_ _ _ _ _ _ _
Z = R7.R6.R5.R4.R3.R2.R1.Ro
V=0

Addressing Formats:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
(DUAL OPERAND)

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 8A 212 138
A DIR 3 2 9A 232 154
A EXT 4 3 BA 272 186
A IND 5 2 AA 252 170
B IMM 2 2 CA 312 202
B DIR 3 2 DA 332 218
B EXT 4 3 FA 372 250
B IND 5 2 EA 352 234

A-45

PSH Push Data Onto Stack

Operation; b (ACCX)
SP « (SP) - 0001

Description: The contents of ACCX is stored in the stack at the address
contained in the stack pointer. The stack pointer is then
decremented.

Condition Codes: Not affected.
Addressing Formats:
See Table A-4.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)

Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.

A 4 1 36 066 054
B 4 1 37 067 055
PUL /Pull Data from Stack
Operation: SP « (SP) + 0001
1 ACCX
Description: The stack pointer is incremented. The ACCX is then loaded

from the stack, from the address which is contained in the
stack pointer.

Condition Codes: Not affected.
Addressing Formats:
See Table A-4.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 4 1 32 062 050
B 4 1 33 063 051

A-46

Rotate Left R 0 L

Operation: <—l I l ’ I I | lb|<_
0

bz

Description: Shifts all bits of ACCX or M one place to the left. Bit 0 is
loaded from the C bit. The C bit is loaded from the most
significant bit of ACCX or M.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Set if all bits of the result are cleared; cleared otherwise.

V: Setif, after the completion of the operation, EITHER (N
is set and C is cleared) OR (N is cleared and C is set);
cleared otherwise.

C: Setif, before the operation, the most significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:
N =Ry o
Z =RsReRs.ReRs.Re.R1.R
V=N@C=INCgINC]
(the foregoing formula assumes values of N and C after
the rotation)

C =My
Addressing Formats:
See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code| HEX.| OCT.{ DEC.
A 2 1 49 111 073
B 2 1 59 131 089
EXT 6 3 79 171 121
IND 7 2 69 151 105

A-47

ROR

Operation:

Description:

Condition Codes:

Rotate Right

—-[Illllllbl-—“

bz

Shifts all bits of ACCX or M one place to the right. Bit 7 is
loaded from the C bit. The C bit is loaded from the least
significant bit of ACCX or M.

=

I.
N:

<N

C:

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared
otherwise.

Set if all bits of the result are cleared; cleared otherwise.

. Setif, after the completion of the operation, EITHER (N

is set and C is cleared) OR (N is cleared and C is set);
cleared otherwise.

Set if, before the operation, the least significant bit of the
ACCX or M was set; cleared otherwise.

Boolean Formulae for Condition Codes:
N =Ry

v =N@C = [NCIQIN.C]

(the foregoing formula assumes values of N and C after the
rotation)

C =Mo

A48

(\/ Addressing Formats:

See Table A-3

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Number of | Coding of First (or only)

Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

A 2 1 46 106 070

B 2 1 56 126 086

EXT 6 3 76 166 118

IND 7 2 66 146 102

A-49

RTI

Operation:

Description:

Condition Codes:

Return from Interrupt

SP « (SP) + 0001 , 1CC

SP « (SP) + 0001 , 1ACCB

SP « (SP) + 0001 , TACCA

SP « (SP) + 0001 , 1IXH

SP « (SP) + 0001 , 1IXL

SP « (SP) + 0001 , TPCH

SP « (SP) + 0001 , 1PCL

The condition codes, accumulators B and A, the index regis-
ter, and the program counter, will be restored to a state pulled

from the stack. Note that the interrupt mask bit will be reset if
and only if the corresponding bit stored in the stack is zero.

Restored to the states pulled from the stack.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code| HEX. [OCT. | DEC.

Number of | Coding of First (or only)

INHERENT

10 1 3B 073 059

C

Return from Interrupt

Example
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A. Before
PC — $D066 3B RTI

SP — $EFF8
$SEFF9 11HINZVC (binary)

$EFFA 12
$EFFB 34
$EFFC 56
$SEFFD 78
$SEFFE 55
$EFFF 67
B. After
PC — $5567 *x sk Kok kok K
$EFF8
$EFF9 11HINZVC (binary)
$EFFA 12
. $EFFB 34
- $EFFC 56
$EFFD 78
$EFFE 55
SP — S$EFFF 67
CC = HINZVC (binary)
ACCB = 12 (Hex) IXH = 56 (Hex)
ACCA = 34 (Hex) IXL = 78 (Hex)

RTS Return from Subroutine

Operation: SP « (SP) + 0001
1 PCH
SP « (SP) + 0001
1 PCL
Description: The stack pointer is incremented (by 1). The contents of the

byte of memory, at the address now contained in the stack
pointer, is loaded into the 8 bits of highest significance in the
program counter. The stack pointer is again incremental (by
1). The contents of the byte of memory, at the address now
contained in the stack pointer, is loaded into the 8 bits of
lowest significance in the program counter.

Condition Codes: Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 5 1 39 071 057

Return from Subroutine

EXAMPLE
Example:
Memory Machine Assembler Language
Location Code (Hex) Label Operator Operand
A. Before
PC $30A2 39 RTS
SP $EFFD
$EFFE 10
$EFFF 02
B. After
PC $1002 Kk Kok k Heokokokok
$EFFD
$EFFE 10
Sp $EFFF 02

Subtract Accumulators SBA

Operation:

Description:

Condition Codes:

ACCA « (ACCA) — (ACCB)

Subtracts the contents of ACCB from the contents of ACCA
and places the result in ACCA. The contents of ACCB are
not affected.

H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Set if all bits of the result are cleared; cleared otherwise.
: Set if there was two’s complement overflow as a result of
the operation.
C: Carry is set if the absolute value of accumulator B plus
previous carry is larger than the absolute value of ac-
cumulator A; reset otherwise.

<N

Boolean Formulae for Condition Codes:

Z =R7.Rs.Rs5.R4.R3.Rz.R1.Ro
V= A7.B7.R7+A7.B7.R7
C = A7.B7+B7.R7+R7.A7

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 10 020 016
A-53

SBC Subtract with Carry
Operation: ACCX « (ACCX) - (M) - (O

Description: Subtracts the contents of M and C from the contents of
ACCX and places the result in ACCX.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if most significant bit of the result is set; cleared
otherwise.

Z: Setif all bits of the result are cleared; cleared otherwise.

V: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.

C: Carry is set if the absolute value of the contents of
memory plus previous carry is larger than the absolute
value of the accumulator; reset otherwise.

Boolean Formulae for Condition Codes:

Z = R7.Re.R5.R¢.R3.R2.R1.Ro

v =§7.M7.R7+X7.M1.Rl

C = X7.M7+M7.R7+R7. X1
Addressing Formats:

See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
(DUAL OPERAND)

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 82 202 130
A DIR 3 2 92 222 146
A EXT 4 3 B2 262 178
A IND 5 2 A2 242 162
B IMM 2 2 C2 302 194
B DIR 3 2 D2 322 210
B EXT 4 3 F2 362 242
B IND 5 2 E2 342 226

A-54

C

SEC

Set Carry
Operation: Cbit « 1
Description: Sets the carry bit in the processor condition codes register.

Condition Codes: H: Not affected.
I: Not affected.
N: Not affected.
Z: Not affected.
V: Not affected.

Set.

Q

Boolean Formulae for Condition Codes:
C=1

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal);

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 0D 015 013
Set Interrupt Mask SE'
Operation: I'bit < 1

Description:

Sets the interrupt mask bit in the processor condition codes
register. The microprocessor is inhibited from servicing an
interrupt from a peripheral device, and will continue with
execution of the instructions of the program, until the inter-

rupt mask bit has been cleared.

Condition Codes: H: Not affected.
I, Set.
N: Not affected.
Z: Not affected.
V: Not affected.
C: Not affected.
Boolean Formulae for Condition Codes:
I =1
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 OF 017 015

A-55

SEV Set Two’s Complement Overflow Bit
Operation: V bit « 1

Description: Sets the two’s complement overflow bit in the processor
condition codes register. :

: Not affected.
Not affected.
: Not affected.
Not affected.
Set.

Not affected.

Boolean Formulae for Condition Codes:
V=1

Condition Codes:

NeNz=m

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code| HEX. | OCT. | DEC.
INHERENT 2 1 0B 013 011

A-56

Store Accumulator STA
Operation: M « (ACCX)
Description: Stores the contents of ACCX in memory. The contents of

ACCX remains unchanged.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the contents of ACCX is
set; cleared otherwise.

Z: Set if all bits of the contents of ACCX are cleared;
cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

N=X, _ _ _ _ _ _ _
Z = X7.X6.X5.X4.X3.X2.X1.Xo
V=0

Addressing Formats:
See Table A-2.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A DIR 4 2 97 227 151
A EXT 5 3 B7 267 183
A IND 6 2 A7 247 167
B DIR 4 2 D7 327 215
B EXT 5 3 F7 367 247
B IND 6 2 E7 347 231

A-57

STS Store Stack Pointer
Operation: M « (SPH)

M + 1 « (SPL)
Description: Stores the more significant byte of the stack pointer in mem-

ory at the address specified by the program, and stores the
less significant byte of the stack pointer at the next location in
memory, at one plus the address specified by the program.

Condition Codes: H: Not affected.

I. Not affected.

N: Set if the most significant bit of the stack pointer is set;
cleared otherwise.

Z: Set if all bits of the stack pointer are cleared; cleared
otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:
N = SPHy

(SPL7.SPL6.SPL5.SPL4.SPL3.SPL2.SPL1.SPLo)
V=0

Addressing Formats:
See Table A-6.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
DIR S 2 9F 237 159
EXT 6 3 BF 277 191
IND 7 2 AF 257 175

A-58

Store Index Register STX
Operation: M « (IXH)

M + 1 « (IXL)
Description: Stores the more significant byte of the index register in

memory at the address specified by the program, and stores

the less significant byte of the index register at the next

location in memory, at one plus the address specified by the

program.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bite of the index register is set;
cleared otherwise.

Z: Set if all bits of the index register are cleared; cleared
otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:
N = IXH7

(IXL7.IXL6.IXLs.IXL4.IXL3.IXL2. IXL1.IXLo)
V=0
Addressing Formats:
See Table A-6.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
DIR 5 2 DF 337 223
EXT 6 3 FF 377 255
IND 7 2 EF 357 239
A-59

S U B Subtract

Operation: ACCX « (ACCX) — (M)

Description: Subtracts the contents of M from the contents of ACCX and
places the result in ACCX.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the result is set; cleared
otherwise.
Set if all bits of the result are cleared; cleared otherwise.
: Setif there was two’s complement overflow as a result of
the operation; cleared otherwise.
C: Carry is set if the absolute value of the contents of
memory is larger than the absolute value of the ac-
cumulator; reset otherwise.

<N

Boolean Formulae for Condition Codes:

Z =R7.Reé.R5.R4.R3.R2.R1.Ro
V = X7.M7.R7+X7.M7.Rs
C = X7.M7+M7.R7+R7. X7

Addressing Formats:
See Table A-1.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

(DUAL OPERAND)

Number of | Coding of First (or only)
Addressing | Execution Time bytes of byte of machine code

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A IMM 2 2 80 200 128
A DIR 3 2 90 220 144
A EXT 4 3 BO 260 176
A IND 5 2 A0 240 160
B IMM 2 2 Co 300 192
B DIR 3 2 DO 320 208
B EXT 4 3 FO 360 240
B IND 5 2 EO 340 224

A-60

Software Interrupt

Operation:

Description:

Condition Codes:

Swi

PC « (PC) + 0001

} (PCL) , SP < (SP)-0001

! (PCH) , SP « (SP)-0001

| (IXL) , SP « (SP)-0001

| IXH) , SP < (SP)-0001

| (ACCA) , SP « (SP)-0001

} (ACCB) , SP <« (SP)-0001

1 (CC) , SP « (SP)-0001

Ie1

PCH < (n-0005)

PCL « (n-0004)

The program counter is incremented (by 1). The program
counter, index register, and accumulator A and B, are pushed
into the stack. The condition codes register is then pushed
into the stack, with condition codes H, I, N, Z, V, C going
respectively into bit positions 5 thru 0, and the top two bits (in
bit positions 7 and 6) are set (to the 1 state). The stack pointer
is decremented (by 1) after each byte of data is stored in the
stack.

The interrupt mask bit is then set. The program counter is
then loaded with the address stored in the software interrupt
pointer at memory locations (n-5) and (n-4), where n is the
address corresponding to a high state on all lines of the
address bus.

H: Not affected.

I. Set.

N: Not affected.

Z: Not affected.

V: Not affected.
Not affected.

0

Boolean Formula for Condition Codes:

Addressing Modes,
decimal):

I =1

Execution Time, and Machine Code (hexadecimal/octal/

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 12 1 3F 077 063
A-61

Software Interrupt

EXAMPLE
A. Before:

CC = HINZVC (binary)

ACCB = 12 (Hex)
34 (Hex)
Memory

ACCA

PC — $5566
SP — S$EFFF
$FFFA

IXH = 56 (Hex)
IXL = 78 (Hex)
Machine Assembler Language
Location Code (Hex) Label Operator Operand
3F SWI
DO
55

$FFFB

B. After:
PC — $DO055
SP — S$EFF8
$EFF9
$EFFA
$EFFB
$EFFC
$EFFD
$EFFE
$EFFF

11HINZVC (binary)

67

Note: This example assumes that FFFF is the memory location addressed when all
lines of the address bus go to the high state.

A-62

Transfer from Accumulator A to Accumulator B TAB
Operation: ACCB « (ACCA)
Description: Moves the contents of ACCA to ACCB. The former contents

of ACCB are lost. The contents of ACCA are not affected.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the contents of the
accumulator is set; cleared otherwise.

Z: Set if all bits of the contents of the accumulator are
cleared; cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

N=R
Z = R:Re.Rs ReR3.R2 R1.Ro
V=0

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. DEC.
INHERENT 2 1 16 026 022
A-63

TAP

Operation:

Description:

Condition Codes:

Transfer from Accumulator A
to Processor Condition Codes Register

CC « (ACCA)
Bit Positions

76 54 3 2 10
[T TTTT1T] acca
| |
[HT1[N]zJv]c] cc

Carry-Borrow

b—————Overflow
(Two’s Complement)

Zero

Negative

Interrupt Mask
Half Carry

Transfers the contents of bit positions O thru 5 of accumulator
A to the corresponding bit positions of the processor condi-
tion codes register. The contents of accumulator A remain

unchanged.

Set or reset according to the contents of the respective bits 0
thru 5 of accumulator A.

Addressing’ Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

INHERENT

2 1 06 006 006

A-64

(,
L/-/ Transfer from Accumulator B to Accumulator A TBA
Operation: ACCA « (ACCB)

Description: Moves the contents of ACCB to ACCA. The former contents
of ACCA are lost. The contents of ACCB are not affected.

Condition Codes: H: Not affected.

I: Not affected.

N: Set if the most significant bit of the contents of the
accumulator is set; cleared otherwise.

Z: Set if all bits of the contents of the accumulator are
cleared; cleared otherwise.

V: Cleared.

C: Not affected.

Boolean Formulae for Condition Codes:

N=R,_ _ _ _ _ _ _
B Z =R7.R6.R5R4.Ra.Rz.Ri.Ro
V=0
Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):
Coding of First (or only)
P Number of byte of machine code
L/ Addressing | Execution Time bytes of
(/ Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 17 027 023

(_‘,/ A-65

TPA

Operation:

_— -

Description:

Condition Codes:

Transfer from Processor Condition Codes Register to
Accumulator A

ACCA « (CO)
Bit Positions

6 5 4 3 2
L 1 [11

H N|Z|V]|C

7
L1

1 CC

[

I-Carry-Bon'ow

Overflow
(Two’s Complement)

Zero

Negative

Interrupt Mask
Half Carry

Transfers the contents of the processor condition codes regis-
ter to corresponding bit positions O thru 5 of accumulator A.
Bit positions 6 and 7 of accumulator A are set (i.e. go to the
“‘1”” state). The processor condition codes register remains
unchanged.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):
Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 2 1 07 007 007

A-66

Test TST

Operation: (ACCX) — 00
(M) - 00

Description: Set condition codes N and Z according to the contents of
ACCX or M.

Condition Codes: H: Not affected.
I: Not affected.
N: Set if most significant bit of the contents of ACCX or M
is set; cleared otherwise.
Z: Set if all bits of the contents of ACCX or M are cleared;
cleared otherwise.

V: Cleared.
C: Cleared.
Boolean Formulae for Condition Codes:
N =M,
Z = K’Iv.h—/lﬁ.Ms.MLﬁs.Mz.Ml.—Mu
V=0
C=0

Addressing Formats:
See Table A-3.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/
decimal):

Coding of First (or only)
Number of byte of machine code
Addressing | Execution Time bytes of

Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
A 2 1 4D 115 077
B 2 1 5D 135 093
EXT 6 3 7D 175 125
IND 7 2 6D 155 109

TSX

Operation:
Description:

Condition Codes:

Transfer from Stack Pointer to Index Register

IX « (SP) + 0001

Loads the index register with one plus the contents of the
stack pointer. The contents of the stack pointer remains
unchanged.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

INHERENT

4 1 30 060 048

XS

Operation:
Description:

Condition Codes:

Transfer From Index Register to Stack Pointer
SP « (IX) — 0001

Loads the stack pointer with the contents of the index regis-
ter, minus one. The contents of the index register remains
unchanged.

Not affected.

Addressing Modes, Execution Time, and Machine Code (hexadecimal/octal/

decimal):

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.

Coding of First (or only)
Number of byte of machine code

INHERENT

4 1 35 065 053

A-68

Wait for Interrupt

Operation:

Condition Codes:

Description:

Condition Codes:

Addressing Modes,
decimal):

WAI

PC « (PC) + 0001

| (PCL) , SP « (SP)-0001

| (PCH) , SP « (SP)-0001
{ (IXL) , SP « (SP)-0001

| (IXH) , SP « (SP)-0001

| (ACCA) , SP « (SP)-0001
| (ACCB) , SP < (SP)-0001
| (CC) , SP « (SP)-0001

Not affected.

The program counter is incremented (by 1). The program
counter, index register, and accumulators A and B, are
pushed into the stack. The condition codes register is then
pushed into the stack, with condition codes H, I, N, Z, v,C
going respectively into bit positions 5 thru 0, and the top two
bits (in bit positions 7 and 6) are set (to the 1 state). The stack
pointer is decremented (by 1) after each byte of data is stored
in the stack.

Execution of the program is then suspended until an interrupt
from a peripheral device is signalled, by the interrupt request
control input going to a low state.

When an interrupt is signalled on the interrupt request line,
and provided the I bit is clear, execution proceeds as follows.
The interrupt mask bit is set. The program counter is then
loaded with the address stored in the internal interrupt pointer
at memory locations (n-7) and (n-6), where n is the address
corresponding to a high state on all lines of the address bus.

H: Not affected.

I Not affected until an interrupt request signal is detected
on the interrupt request control line. When the interrupt
request is received the I bit is set and further execution
takes place, provided the I bit was initially clear.

Not affected.

Not affected.

: Not affected.

Not affected.

Execution Time, and Machine Code (hexadecimal/octal/

A<Nz

Coding of First (or only)
Number of byte of machine code

Addressing | Execution Time bytes of
Modes (No. of cycles) | machine code | HEX. | OCT. | DEC.
INHERENT 9 1 3E 076 062
A-69

Addressing Mode of

First Operand

Second Operand Accumulator A Accumulator B

IMMediate CCC A #Number CCC B #Number
CCC A #symbol CCC B #symbol
CCC A #expression CCC B #expression
CCC A #C CCCB #'C

DIRect or EXTended CCC A Number CCC B Number
CCC A symbol CCC B symbol
CCC A expression CCC B expression

INDexed CCCAX CCCBX
cccz X CCCB X

CCC A Number,X
CCC A symbol, X
CCC A expression,X

CCC B Number, X
CCC B symbol, X
CCC B expression, X

Notes: 1. CCC = Mnemonic operator of source instruction

2. ‘“‘symbol’’ may be the special symbol ***”’

3. “‘expression’’ may contain the special symbol *‘**’
4. space may be omitted before A or B

Applicable to the Following Source Instructions:

ADC ADD AND BIT CMP
EOR LDA ORA SBC SUB

*Special symbol indicating program-counter

TABLE A-1. Addressing Formats (1)

A-70

(N

Addressing Mode of
Second Operand

First Operand

Accumulator A

Accumulator B

DIRect or EXTended

STA A Number
STA A symbol
STA A expression

STA B Number
STA B symbol
STA B expression

INDexed STAAX STABX
STA A X STA B X
STA A Number,X STA B Number,X
STA A symbol, X STA B symbol, X
STA A expression,X STA B expression, X
Notes: ““‘symbol’”’ may be the special symbol ‘‘*’’.

space may be omitted before A or B.

Applicable to the Source Instruction:

STA

*Special symbol indicating program-counter

1.
2. ‘‘expression’’ may contain the special symbol ‘‘*”’,
3.

TABLE A-2. Addressing Formats (2)

A-71

Operand or
Addressing Mode Formats

Accumulator A CCC A

Accumulator B CCCB

EXTended ‘ CCC Number
CCC symbol
CCC expression

INDexed CCC X

CCC X

CCC Number,X
CCC symbol, X
CCC expression,X

Notes: 1. CCC + Mnemonic operator of source instruction.
2. “‘symbol” may be the special symbol ‘“*’*.
3. “‘expression’’ may contain the special symbol ‘**’
4. space may be omitted before A or B

Applicable to the Following Source Instructions:

ASL ASR CLR COM DEC INC
LSR NEG ROL ROR TST

*Special symbol indicating program-counter

TABLE A-3. Addressing Formats (3)

Operand Formats
Accumulator A CCC A
Accumulator B CCCB

Notes: 1. CCC = Mnemonic operator of source instruction
2. space may be omitted before A or B

Applicable to the Following Source Instructions:
PSH PUL

TABLE A-4. Addressing Formats (4)
A-72

Addressing Mode

Formats

IMMediate

CCC #number
CCC #symbol
CCC #expression
CCC #°C

DIRect or EXTended

CCC Number
CCC symbol
CCC expression

INDexed

CCC X

CCC X
CCCNumber, X
CCC symbol,X
CCC expression, X

'~

Notes: 1. CCC = Mnemonic operator of source instruction

2. **symbol’’ may be the special symbol ***”’
3. “‘expression’” may contain the special symbol ‘***

Applicable to the Following Source Instructions:

CPX LDS LDX

*Special symbol indicating program-counter

TABLE A-5. Addressing Formats (5)

Addressing Mode Formats

DIRect or EXTended CCCN
CCC symbol
CCC expression
INDexed Cccc X
CCcC X

CCC Number,X
CCC symbol, X
CCC expression,X

Notes: 1. CCC = Mnemonic operator of source instruction
2. **symbol’” may be the special symbol ‘“**’
3. “‘expression’’ may contain the spcial symbol ¢***’

Applicable to the Following Soiirce Instructions:
STS STX
*Special symbol indicating program-counter

TABLE A-6. Addressing Formats (6)

Addressing Mode Formats
EXTended CCC Number
CCC symbol
CCC expression
INDexed CCC X
CCC X

CCC Number,X
CCC symbol, X
CCC expression, X

Notes: 1. CCC = Mnemonic operator of source instruction
2. ‘“‘symbol’’ may be the special symbol ‘‘**’
3. “‘expression’’ may contain the special symbol ****’

Applicable to the Following Source Instructions:
JMP JSR

*Special symbol indicating program-counter

TABLE A-7. Addressing Formats (7)
A-74

C

Addressing Mode Formats

RELative CCC Number
CCC symbol
CCC expression

Notes: 1. CCC = Mnemonic operator of source instruction
2. “‘symbol’’ may be the special symbol ***’’
3. “expression’ may contain the special symbol ****’

Applicable to the Following Source Instructions:

BCC BCS BEQ BGE BGT BHI BLE BLS
BLT BMI BNE BPL BRA BSR BVC BVS

*Special symbol indicating program-counter

TABLE A-8. Addressing Formats (8)

A-75

-

appendix :
B

Assembler Dlrectivds

APPENDIX B
Definition of the Assembler Directives

Alphabetic List of Assembler Directives

END End of program

EQU Equate symbol

FCB Form Constant byte

FCC Form Constant Characters
FDB Form Double Constant Byte
MON Return to Monitor

NAM Name program

OPT Option

ORG Origin

PAGE Advance Listing to top of page
RMB Reserve Memory Bytes

SPC Space n lines

END - End of Program

When the assembler directive "END", is used,.it marks the end of a
source program and can be followed only by a statement containing the
assembler directive "MON" or another program.

The operator in the last statement of a source program must be
either "END" or "MON". If the program ends with a "MON" directive, the
use of "END" is optional.

The "END" directive must not be written with a label, and it does
not have an operand.

The "END" directive is not translated into object code.

EQU - Equate Symbol

The "EQU" directive is used to assign a value to a symbol. The
"EQU" statement must contain a label which is identical with the symbo1
being defined. The operand field may contain the numerical value of the
symbol (decimal, hexadecimal, octal, or binary). Alternatively, the
operand field may be another symbol or an expression which can be eva-
Tuated by the assembler. The EQU statement is not translated into object
code.

The following are examples of valid "EQU" statements:

Location Data Label Operator Operand
0A01 SUN EQU $A01
0003 AB EQU 3
0A01 AA EQU SUN
0A04 AC EQU AB+AA
OFC1 ABC EQU $FCI

B 1

Relating to the use of a symbol or an expression in the operand
field, only one level of forward referencing will assemble correctly.
This reflects a two-pass characteristic of the assembly process. An
(111egal) example of two levels of forward referencing would be:

E EQU Y
Y EQU C
c EQU 5

This will not assemble correctly because E will not be assigned a
numerical value at the end of pass 2. E and Y are both undefined
throughout pass 1. E is undefined throughout pass 2 and will cause an
error message.

FCB ~ Form Constant Byte

The "FCB" directive may have one or more operands, separated by
commas. An 8-bit unsigned binary number, corresponding to the value of
each operand is stored in a byte of the object program. If there is more
than one operand, they are stored in successive bytes. The operand field
may contain the actual value (decimal, hexadecimal, octal, or binary).
Alternatively, the operand may be a symbol or an expression which can be
assigned a numerical value by the assembler.

An "FCB" directive followed by one or more void operands separated
by commas will store zeros for the void operands.

An "FCB" directive may be written with a label.
Examples of valid "FCB" directives follow:

Location Data Label Operator Operand

0000 FF TOP FCB $FF
0001 00 TAB FCB »$F,23,
0002 OF

0003 17

0004 00

0005 E5 FCB *+$EO0

FCC - Form Constant Characters

The "FCC" directive translates strings of characters into their
7-bit ASCII codes. Any of the characters which correspond to ASCII hex-
adecimal codes 20 (SP) thru 5F (_) can be processed by this directive.

1. Count, comma, text. Where the count specifies how many ASCII
characters to generate and the text begins following the first
comma of the operand. Should the count be longer than the text,

spaces will be inserted to fill the count. Maximum count is 255.

2. Text enclosed between identical delimiters, each being any sin-
gle character. (If the delimiters are numbers, the text must
not begin with a comma.)

82

= G

C

C

If the string in the operand comprises more than one character,
the ASCII codes corresponding to the successive characters are entered
into successive bytes of memory.

An "FCC" directive may be written with a label.

The following are examples of valid "FCC" directives:

Location Data Label Operator Operand

0A0O 54 MSG1 FCC /TEXT/
0AO01 45
0A02 58
0A03 54
0AO4 54 MSG2 FCC 9, TEXT
0AO5 45
0A06 58
0AQ7 54
0A08 20
0A09 20
0AOA 20
0AOB 20
0AOC 20

FDB - Form Double Constant Byte

The "FDB" directive may have one or more operands separated by
commas. The 16-bit unsigned binary number, corresponding to the value
of each operand is stored in two bytes of the object program. If there
is more than one operand, they are stored in successive bytes. The oper-
and field may contain the actual value (decimal, hexadecimal, octal, or
binary). Alternatively, the operand may be a symbol or an expression
which can be assigned a numerical value by the assembler.

An "FDB" directive followed by one or more void operands separated
by commas will store zeros for the void operands.

An "FDB" directive may be written with a label.
Examples of valid "FDB" directives follow:

Location Data Label Operator Operand

0010 0002 TWO FDB 2
0012 0000 MASK FDB »$F,$EF, , $AFF
0014 000F
0016 O0EF
0018 0000
001A OAFF

B3

MON - Return to Monitor

The assembler directive "MON", if used, must be in the last state-
ment of a source program. (See assembler directive "END" above.) The
“MON" directive instructs the assembler that the source program just
completed is the last to be assembled, and it returns control to the
680b PROM Monitor.

The last statement of a source program must contain either "END"
or "MON".

The assembler directive "MON" must not be written with a label,
and no operand is used.

The "MON" directive is not translated into object code.
NAM - Name

The "NAM" (or NAME) directive names the program, or provides the
top of page heading text meaningful to users of the assembly.

The "NAM" directive must not be written with a label. The "NAM"
directive cannot distinguish the operand field from the comment field.
Both the operand field and the comment field are treated as continuous
text.

No object code results from the "NAM" directive.
OPT - Option

The "OPT" directive is used to give the programmer optional control
of the format of assembler output. The details of the "OPT" directive
depend on the version of the 680b Resident Assembler being used. When
the Assembler becomes available, details of the "OPT" directive will be
included in the documentation.

ORG - Origin

The assembler directive "ORG" defines the numerical address of the
first byte of machine code which results from the assembly of the imme-
diately subsequent section of a source program. There may be any number
of "ORG" statements in a program. The "ORG" directive sets the program
counter to the value expressed in the operand field.

The operand field may contain the actual value (decimal, hexadeci-
mal, octal, or binary) to which the program counter is to be set. Alter-
natively, the operand field may contain a symbol or an expression which
can be assigned a numerical value by the assembler.

The location counter is initialized before each assembly. If no
"ORG" statement appears at the beginning of the program, the location
counter will begin as if an "ORG" zero had been entered.

An "ORG" directive must not be written with a label.

The ORG statement does not translate into object code.

The following are examples of valid ORG statements:

B4

_a

Location Data Label Operator Operand

0064 (blank) ORG 100

AF23 (blank) ORG $AF23
1100 BEGIN EQU $1100

1100 (blank) ORG BEGIN

PAGE - Advance Paper to Top of Next Page

The "PAGE" directive causes the Assembler to advance the paper to
the top of the next page. The PAGE directive does not appear on the
program 1isting. No label or operand is used, and no machine code
results.

RMB - Reserve Memory Bytes

The "RMB" directive causes the location counter to be increased by
the value of the operand field. This reserves a block of memory whose
Tength is equal to the value of the operand field. The operand field
may contain the actual number (decimal, hexadecimal, octal or binary)
equal to the number of bytes to be reserved. Alternatively, the operand
may be a symbol or an expression which can be assigned a numerical value
by the assembler.

The block of memory which is reserved by the "RMB" directive is
unchanged by that directive.

The "RMB" directive may be written with a label.

Examples of valid "RMB" directives follow (the data column indicates
the number of bytes being reserved):

Location Data Label Operator Operand

0100 0004 RMB 4
0104 0014 TABLE 1 RMB 20
0118 0014 TABLE 2 RMB 20

SPC - Space N Lines

The "SPC" directive provides n vertical spaces for formatting the
program 1isting. It does not itself appear in the listing. The number
of lines to be left blank is stated by an operand in the operand field.

The operand would normally contain the actual number (decimal, hex-
adecimal, octal, or binary) equal to the number of lines to be left
blank. A symbol or an expression is also allowed.

The "SPC" directive must not be written with a label.

When the "SPC" directive causes the Tisting to cross page boundries
only those blank lines required to get to the top of the next page will
be generated.

Bj

appendix
C

Input /Output Information

APPENDIX C, INPUT/OUTPUT INFORMATION
ACIA

The 680b is supplied with an Asynchronous Communications Interface
Adapter (ACIA) for the purpose of handling serial input and output oper-
ations. Initialization and control of this I/0 port is usually handled
by system software such as the PROM Monitor.

The following information concerning the ACIA registers is included
for those who wish to do their own initialization and I/0 handling.

ACIA Registers
Transmit Data Register (TDR)

Writing data into the Transmit Data Register causes the Transmit
Data Register Empty bit in the Status Register to go Tow. Data can then
be transmitted. If the transmitter is idling and no character is being
transmitted, then the transfer will take place within one bit time of
the trailing edge of the Write command. If a character is being trans-
mitted, the new data character will commence as soon as the previous
character is complete. The transfer of data causes the Transmit Data
Register Empty (TDRE) bit to indicate empty.

Receive Data Register (RDR)

Data is automatically transferred to the empty Receive Data Register
(RDR) from the receiver deserializer (a shift register) upon receiving a
complete character. This event causes the Receive Data Register Full
bit (RDRF) in the status buffer to go high (full). Data may then be
read through the bus by addressing the ACIA and selecting the Receive
Data Register with RS and R/W high when the ACIA is enabled. The non-
destructive read cycle causes the RDRF bit to be cleared to empty al-
though the data is retained in the RDR. The status is maintained by
RDRF as to whether or not the data is current. When the Receive Data
Register is full, the automatic transfer of data from the Receiver
Shift Register to the Data Register is inhibited and the RDR contents
remain valid with its current status stored in the Status Register.

Control Register

The ACIA Control Register consists of eight bits of write-only
buffer that are selected when RS and R/W are Tow. This register con-
trols_the function of the receiver, transmitter, interrupt enables, and
the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CRO and CR1) - The Counter Divide Select
Bits (CRO and CR1) determine the divide ratios utilized in both the trans-
mitter and receiver sections of the ACIA. Additionally, these bits are
used to provide a master reset for the ACIA which clears the Status Re-
gister (except for external conditions on CTS and DCD) and initializes
both the receiver and transmitter. Master reset does not affect other
Control Register bits. Note that after power-on or a power fail/restart,
these bits must be set high to reset the ACIA. After resetting, the

“clock divide ratio may be selected. These counter select bits provide

for the following clock divide ratios:
Cl1

CR1 CRO Function

0 0 +1

0 1 +16

1 0 +64

1 1 Master Reset

Word Select Bits (CR2, C3, and CR4) - The Word Select bits are used
to select word length, parity, and the number of stop bits. The encoding
format is as follows:

CR4 CR3 CR2 Function

0 0 0 7 Bits + Even Parity + 2 Stop Bits
0 0 1 7 Bits + 0dd Parity + 2 Stop Bits
0 1 0 7 Bits + Even Parity + 1 Stop Bit
0 1 1 7 Bits + 0dd Parity + 1 Stop Bit

1 0 0 8 Bits + 2 Stop Bits

1 0 1 8 Bits + 1 Stop Bit

1 1 0 8 Bits + Even Parity + 1 Stop Bit
1 1 1 8 Bits + Odd Parity + 1 Stop Bit

Word length, Parity Select, and
and, therefore, become effective immediately.

Stop Bit changes are not buffered

Transmitter Control Bits (CR5 and CR6) - Two Transmitter Control
bits provide for the control of the interrupt from the Transmit Data
Register Empty condition, the Request-to-Send output, and the transmis-
The following encoding format is used:

sion of a Break level (space).

CR6 CR5 Function
0 0 RTS = low, Transmitting Interrupt Disabled.
0 1 RTS = low, Transmitting Interrupt Enabled.
1 0 RTS = high, Transmitting Interrupt Disabled.
1 1 RTS = low, Transmits a Break level on the
Transmit Data Output, Transmitting
Interrupt Disabled.

C2

Receive Interrupt Enable Bit (CR7) - Interrupts will be enabled by
a high Tevel in bit position 7 of the Control Register (CR7). Interrupts
from the receiver section, Receive Data Register Full being high or by a
Tow to high transition on the Data Carrier Detect signal line, are en-
abled or disabled by the Receive Interrupt Enable Bit.

Status Register

Information on the status of the ACIA is available to the MPU by
reading the ACIA Status Register. This read-only register is selected
when RS is low and R/W is high. Information stored in this register
indicates the status of the Transmit Data Register, the Receive Data
Register and error logic, and the peripheral/modem status inputs of the
ACIA.

Receive Data Register Full (RDRF), Bit 0 - Receive Data Register
Full indicates that received data has been transferred to the Receive
Data Register. RDRF is cleared after an MPU read of the Receive Data
Register or by a master reset. The cleared or empty state indicates
that the contents of the Receive Data Register are not current. Data
Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 - The Transmit Data
Register Empty bit being set high indicates that the Transmit Data
Register contents have been transferred and that new data may be entered.
The Tow state indicates that the register is full and that transmission
of a new character has not begun since the last write data command.

Data Carrier Detect (DCD), Bit 2 - The Data Carrier Detect bit will
be high when the DCD input from a modem has gone high to indicate that
a carrier is not present. This bit going high causes an Interrupt Re-
quest to be generated when the Receive Interrupt Enable is set. It
remains high after the DCD input is returned low until cleared by first
reading the Status Register and then the Data Register or until a master
reset occurs. If the DCD input remains high after read status and read
data or master reset have occurred, the DCD status bit remains high and

will follow the DCD input.

CTear-to-Send (CTS), Bit 3 - The Clear-to-Send bit indicates the
state of the Clear-to-Send input from a modem. A Tow CTS indicates that
there is a Clear-to-Send from the modem. In the high state, the Trans-
mit Data Register Empty bit is inhibited and the Clear-to-Send status
bit will be high. Master reset does not affect the Clear-to-Send Status
bit.

C3

Framing Error (FE), Bit 4 - Framing error indicates that the re-
ceived character is improperly framed by a start and a stop bit and is
detected by the absence of the 1st stop bit. This error indicates a
synchronization error, faulty transmission, or a break condition. The
framing error flag is set or reset during the receive data transfer
time. Therefore, this error indicator is present throughout the time
that the associated character is available.

Receiver Overrun (OVRN), Bit 5 - Overrun is an error flag that
indicates that one or more characters in the data stream were lost.
That is, a character or a number of characters were received but not
read from the Receive Data Register (RDR) prior to subsequent charac-
ters being received. The overrun condition begins at the midpoint of
the last bit of the second character received in succession without a
read of the RDR having occurred. The Overrun does not occur in the
Status Register until the valid character prior to Overrun has been
read. The RDRF bit remains set until the Overrun is reset. Character
synchronization is maintained during the Overrun condition. The Over-
run indication is reset after the reading of data from the Receive
Data Register. Overrun is also reset by the Master Reset.

Parity Error (PE), Bit 6 - The parity error flag indicates that
the number of highs (ones) in the character does not agree with the
preselected odd or even parity. 0dd parity is defined to be when the
total number of ones is odd. The parity error indication will be pre-
sent as long as the data character is in the RDR. If no parity is
selected, then both the transmitter parity generator output and the
receiver parity check results are inhibited.

Interrupt Request (IRQ), Bit 7 - The IRQ bit indicates the state
of the IRQ output. Any interrupt condition with its_applicable enable
will be indicated in this status bit. Anytime the IRQ output is Tow,
the IRQ bit will be high to indicate the interrupt or service request
status. .

Paper Tape Reader Control

When the paper tape reader control circuit_is used, the RTS output
of the ACIA turns the reader on and off. When RTS is high, the reader
will be on. When RTS is low, the reader will be off. Therefore, the
reader is turned on when CR6 is 1 and CR5 is 0. This also turns off
input interrupts. (See ACIA Control Register above.) The reader is
off for the three other possible combinations of CR6 and CR5.

Interrupt Vectors

The processor interrupt vectors are located in locations FFF8
through FFFF within the 680b PROM Monitor. The contents of the
interrupt vectors depends on the version of the Monitor being used.
Refer to Section VI of the System Monitor Manual for further informa-
tion.

C4

2450 Alamo SE
Albuquerque, NM 87106

